Алгоритм Ланцоша с выборочной ортогонализацией: различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Qmakar (обсуждение | вклад) |
Qmakar (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Свойства и структура алгоритма == | == Свойства и структура алгоритма == | ||
===Общее описание алгоритма=== | ===Общее описание алгоритма=== | ||
− | + | Алгоритм Лáнцоша представляет собой мощный метод для нахождения нескольких собственных значений и собственных векторов симметричной матрицы А и для решения систем линейных уравнений. Алгоритм особенно эффективен, если матрица А разреженная и большого размера. Однако любая практическая реализация этого алгоритма страдает от ошибок округления, т.к. векторы Ланцоша теряют взаимную ортогональность. Для того чтобы поддерживать некоторый уровень ортогональности, появились методы полной переортогонализации и выборочной ортогонализации. В этой работе мы рассмотрим последний метод в качестве способа для поддержания ортогональности среди векторов Ланцоша. Он состоит в том, что на каждом шаге проверяется | |
<math> \beta_0=0,q_0=0</math> | <math> \beta_0=0,q_0=0</math> |
Версия 17:28, 11 декабря 2016
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Лáнцоша представляет собой мощный метод для нахождения нескольких собственных значений и собственных векторов симметричной матрицы А и для решения систем линейных уравнений. Алгоритм особенно эффективен, если матрица А разреженная и большого размера. Однако любая практическая реализация этого алгоритма страдает от ошибок округления, т.к. векторы Ланцоша теряют взаимную ортогональность. Для того чтобы поддерживать некоторый уровень ортогональности, появились методы полной переортогонализации и выборочной ортогонализации. В этой работе мы рассмотрим последний метод в качестве способа для поддержания ортогональности среди векторов Ланцоша. Он состоит в том, что на каждом шаге проверяется
[math] \beta_0=0,q_0=0[/math] [math] q_{1} = \frac{b_{j}}{\|b\|_2}[/math], где [math] \|b\|_2 = \sqrt{\sum\limits_{j=1}^{n} b_j^2}[/math] [math] for\, j=1\,\, to\, \, k\, \, do:[/math] [math]z=Aq_j, [/math] [math]\alpha_j=q_j^Tz, [/math] [math]z=z-\alpha_jq_j-\beta_{j-1}q_{j-1}, [/math] [math]for\, i=1\,\, to\, \, j-1\, \, do: [/math] [math]if\, \beta_j|v_i(j)| \leqslant \sqrt{\varepsilon}\|T_j\| [/math] [math]z = z-(y^T_{i,j},z)y_{i,j} [/math], где [math]y_{i,j} = Q_jv_i[/math] [math]\beta_{j}=\|z\|_2 [/math] [math]q_{j+1}=z/\beta_{j}, [/math] Вычисляем собственные значения и собственные векторы полученной матрицы [math]T_j[/math].