Метод сдваивания Стоуна: различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Frolov (обсуждение | вклад) (Новая страница: «== Свойства и структура алгоритмов == === Общее описание алгоритма === === Математическое опис…») |
Frolov (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Свойства и структура алгоритмов == | == Свойства и структура алгоритмов == | ||
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
+ | |||
+ | '''Метод сдваивания Стоуна''' - один из вариантов замены прогонки в приложении к решению СЛАУ<ref name="VOLA">Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.</ref><ref name="MIV">Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.</ref> вида <math>Ax = b</math>, где | ||
+ | :<math> | ||
+ | A = \begin{bmatrix} | ||
+ | a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ | ||
+ | a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ | ||
+ | 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ | ||
+ | \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ | ||
+ | 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ | ||
+ | 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ | ||
+ | \end{bmatrix}, x = \begin{bmatrix} | ||
+ | x_{1} \\ | ||
+ | x_{2} \\ | ||
+ | \vdots \\ | ||
+ | x_{n} \\ | ||
+ | \end{bmatrix}, b = \begin{bmatrix} | ||
+ | b_{1} \\ | ||
+ | b_{2} \\ | ||
+ | \vdots \\ | ||
+ | b_{n} \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | Впервые изложен в начале 70-х гг. 20го века<ref>Stone H.S. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations // J. ACM, Vol. 20, No. 1 (Jan. 1973), P. 27-38.</ref>, в качестве замены другим параллельным алгоритмам решения трёхдиагональных СЛАУ, например, [[Метод циклической редукции|методу циклической редукции]]. В отличие от своих предшественников, метод Стоуна основан на <math>LU</math>-разложении матрицы исходной СЛАУ и состоит из двух существенно различных по свойствам частей: [[Алгоритм сдваивания Стоуна для LU-разложения трёхдиагональной матрицы|алгоритма сдваивания Стоуна для LU-разложения трёхдиагональной матрицы]] и [[Метод сдваивания Стоуна для решения двухдиагональных СЛАУ|метода сдваивания Стоуна для решения двухдиагональных СЛАУ]]. | ||
+ | |||
=== Математическое описание === | === Математическое описание === | ||
=== Вычислительное ядро алгоритма === | === Вычислительное ядро алгоритма === |
Версия 16:52, 11 июля 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Метод сдваивания Стоуна - один из вариантов замены прогонки в приложении к решению СЛАУ[1][2] вида [math]Ax = b[/math], где
- [math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \end{bmatrix} [/math]
Впервые изложен в начале 70-х гг. 20го века[3], в качестве замены другим параллельным алгоритмам решения трёхдиагональных СЛАУ, например, методу циклической редукции. В отличие от своих предшественников, метод Стоуна основан на [math]LU[/math]-разложении матрицы исходной СЛАУ и состоит из двух существенно различных по свойствам частей: алгоритма сдваивания Стоуна для LU-разложения трёхдиагональной матрицы и метода сдваивания Стоуна для решения двухдиагональных СЛАУ.