Участник:ArtyomKhakimov/Алгоритм Ланцоша для арифметики с плавающей точкой с выборочной ортогонализацией: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 11: Строка 11:
  
 
{{Шаблон:ASymmetric}} <math> ,\, \;</math>
 
{{Шаблон:ASymmetric}} <math> ,\, \;</math>
 +
 +
 +
случайный вектор <math>b</math>, как первое приближение собственного вектора матрицы и <math>k </math> - количество собственных значений и собственных векторов, которые требуется найти.
 +
 +
Матрица <math>Q_j = [q_1, q_2, \dots, q_j]</math> размерности <math>n \times j</math> строится на каждой итерации и состоит из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца <math>\theta_i </math>, - собственные значения симметричной трехдиагональной матрицы <math>T_j = Q^T_j A Q_j</math> размерности <math>j \times j</math>.
 +
 +
:<math>
 +
T_j = \begin{pmatrix}
 +
\alpha_1 & \beta_1 \\
 +
\beta_1 & \alpha_2 & \beta_2 \\
 +
& \beta_2 & \ddots & \ddots \\
 +
& & \ddots & \ddots & \beta_{j-1} \\
 +
& & & \beta_{j-1} & \alpha_j
 +
\end{pmatrix}\; (2).
 +
</math>

Версия 11:26, 19 января 2017

Авторы: Хакимов А. С.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша служит для нахождения собственных значений и собственных векторов для больших разреженных матриц, к которым нельзя применить прямые методы из-за больших требований к памяти и времени. Он был опубликован Корнелием Ланцошем в 1950 году. Его эффективность обусловлена экономией памяти для хранения матриц и экономией вычислительных ресурсов. Алгоритм итерационный и использует степенной метод для поиска наибольших собственных значений и векторов матриц. Основной недостаток алгоритма заключается в накоплении ошибок округления, для решения которых появились методы поддержания ортогонализации т.н. векторов Ланцоша. Здесь мы рассмотрим выборочный метод поддержания ортогонализации, который существенно экономит процессорное время.


На вход алгоритма подаётся [math]A = A^T[/math],


[math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math] [math] ,\, \;[/math]


случайный вектор [math]b[/math], как первое приближение собственного вектора матрицы и [math]k [/math] - количество собственных значений и собственных векторов, которые требуется найти.

Матрица [math]Q_j = [q_1, q_2, \dots, q_j][/math] размерности [math]n \times j[/math] строится на каждой итерации и состоит из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца [math]\theta_i [/math], - собственные значения симметричной трехдиагональной матрицы [math]T_j = Q^T_j A Q_j[/math] размерности [math]j \times j[/math].

[math] T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix}\; (2). [/math]