Уровень метода

QR-алгоритм: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[досмотренная версия][досмотренная версия]
Строка 10: Строка 10:
  
 
Суть базового QR-алгоритма заключается в итерационном приведении матрицы <math>A</math> к некоторой унитарно подобной ей матрице <math>A_N</math> при помощи QR-разложения. Матрица <math>A_N</math> является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц <math>A</math> и <math>A_N</math> их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы <math>A</math> сводится к задаче выведения матрицы <math>A_N</math> и поиска собственных значений для нее, что является тривиальной задачей.
 
Суть базового QR-алгоритма заключается в итерационном приведении матрицы <math>A</math> к некоторой унитарно подобной ей матрице <math>A_N</math> при помощи QR-разложения. Матрица <math>A_N</math> является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц <math>A</math> и <math>A_N</math> их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы <math>A</math> сводится к задаче выведения матрицы <math>A_N</math> и поиска собственных значений для нее, что является тривиальной задачей.
 
Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существует несколько способов ускорить его:
 
* Перед итерациями привести матрицу <math>A</math> к подобной ей матрице <math>A_H</math>, которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения.
 
* Использовать QR-алгоритм со сдвигами. Это позволит уменьшить количество итераций алгоритма.
 
В дальнейшем, в данной статье под модифицированным алгоритмом будет пониматься алгоритм, использующий сдвиги и матрицу с формой Хессенберга. Под базовым алгоритмом будет пониматься алгоритм, не использующий данные приемы.
 
  
 
== Литература ==
 
== Литература ==
 
<references />
 
<references />

Версия 15:55, 20 апреля 2017


Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких соответствующих друг другу чисел [math]\lambda[/math] и ненулевых векторов [math]x[/math], которые удовлетворяют уравнению [math]Ax=\lambda x[/math], при этом числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - собственными векторами[1].

Данная задача является одной из самых сложных задач линейной алгебры[2]. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует прямых методов вычисления собственных значений для матриц общего вида, поэтому данная задача на практике решается численными итерационными методами. Одним из них является QR-алгоритм.

1 Общее описание метода

QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел матрицы. При этом алгоритм позволяет найти и собственные вектора матрицы. Он был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма[3].

Суть базового QR-алгоритма заключается в итерационном приведении матрицы [math]A[/math] к некоторой унитарно подобной ей матрице [math]A_N[/math] при помощи QR-разложения. Матрица [math]A_N[/math] является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц [math]A[/math] и [math]A_N[/math] их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы [math]A[/math] сводится к задаче выведения матрицы [math]A_N[/math] и поиска собственных значений для нее, что является тривиальной задачей.

2 Литература

  1. В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.
  2. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  3. Wikipedia: QR-algorithm