Поиск в ширину (BFS): различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
ASA (обсуждение | вклад) |
Elijah (обсуждение | вклад) |
||
Строка 10: | Строка 10: | ||
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
=== Информационный граф === | === Информационный граф === | ||
+ | |||
+ | Информационный граф | ||
+ | |||
+ | [[Файл:BFS-информацинный_граф.png]] | ||
+ | |||
=== Ресурс параллелизма алгоритма === | === Ресурс параллелизма алгоритма === | ||
=== Входные и выходные данные алгоритма === | === Входные и выходные данные алгоритма === |
Версия 12:33, 11 июля 2017
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
Поиск в ширину (англ. Breadth-First Search, BFS) позволяет вычислить кратчайшие расстояния (в терминах количества рёбер) от выделенной вершины ориентированного графа до всех остальных вершин, и/или построить корневое направленное дерево, расстояния в котором совпадают с расстояниями в исходном графе. Алгоритм решает задачу поиска кратчайшего пути на графе в случае одинаковых весов рёбер. Впервые алгоритм поиска в ширину описан в работах Мура[1] и Ли[2].
1.1 Общее описание алгоритма
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- Распределённый алгоритм поиска вширь является вычислительным ядром бенчмарка Graph500.
- C++: Boost Graph Library (функции
breadth_first_search
,breadth_first_visit
). - C++, MPI: Parallel Boost Graph Library (функция
breadth_first_search
). - Java: WebGraph (класс
ParallelBreadthFirstVisit
), многопоточная реализация. - Python: NetworkX (функция
bfs_edges
). - Python/C++: NetworKit (класс
networkit.graph.BFS
).