Участник:Сорокин Александр/Метод сопряженных градиентов (Решение СЛАУ): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 15: Строка 15:
  
  
где <math> p_i </math> — направление движения, а <math> \alpha_i </math> — величина шага.
+
где <math> p_i </math> — направление движения, а <math> \alpha_i </math> — величина шага. <br>
 
Из рассуждений выше понятно что оптимальным является направление <math> p_i = - \bigtriangledown \phi (x_{i}) </math>. Величина <math> \alpha_i </math> выбирается из соображений <math> \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) </math>. Аналитическую формулу <math> \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} = \frac{r_i ^T r_i}{r_i ^T A r_i} </math> можно получить из <math> \frac{d}{d\alpha} \phi (x_i + \alpha p_i) = 0 </math>.
 
Из рассуждений выше понятно что оптимальным является направление <math> p_i = - \bigtriangledown \phi (x_{i}) </math>. Величина <math> \alpha_i </math> выбирается из соображений <math> \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) </math>. Аналитическую формулу <math> \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} = \frac{r_i ^T r_i}{r_i ^T A r_i} </math> можно получить из <math> \frac{d}{d\alpha} \phi (x_i + \alpha p_i) = 0 </math>.
  

Версия 17:18, 22 октября 2017

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей, является итерационным методом Крыловского типа. Основная идея метода заключается в том, чтобы минимизировать на подпространствах Крылова А-норму ошибки.

1.2 Математическое описание алгоритма

Пусть необходимо найти решение системы уравнений [math] Ax = b [/math], где [math] A^* = A \gt 0 [/math].
Рассмотрим функционал [math] \phi (x) = \frac{1}{2}x^T A x - x^T b [/math].
Если [math] x^* [/math] это решение задачи минимизации данного функционала, то в этой точке градиент [math] \bigtriangledown \phi (x^*) = Ax^* - b [/math] должен быть равен нулю. Таким образом, минимизируя функционал [math] \phi (x) [/math] мы получим решение исходной системы.

1.2.1 Метод градиентного спуска

Как известно, градиент [math] \bigtriangledown \phi (x) [/math] является направлением наибольшего роста функции.
Метод градиентного спуска основан на стратегии движения в строну, противоположную возрастанию функционала. Оптимальным направлением в этом случае будет антиградиент [math] -\bigtriangledown \phi (x) [/math] и двигаться по нему нужно будет до тех пор, пока функционал убывает.
Таким образом можно построить следующий итерационный метод:

  1. Выберем произвольное начальное приближение [math] x_0 [/math].
  2. [math] x_{i+1} = x_{i} + \alpha_i p_i [/math]


где [math] p_i [/math] — направление движения, а [math] \alpha_i [/math] — величина шага.
Из рассуждений выше понятно что оптимальным является направление [math] p_i = - \bigtriangledown \phi (x_{i}) [/math]. Величина [math] \alpha_i [/math] выбирается из соображений [math] \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) [/math]. Аналитическую формулу [math] \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} = \frac{r_i ^T r_i}{r_i ^T A r_i} [/math] можно получить из [math] \frac{d}{d\alpha} \phi (x_i + \alpha p_i) = 0 [/math].

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература