Нахождение частных сумм элементов массива сдваиванием: различия между версиями
[выверенная версия] | [непроверенная версия] |
Frolov (обсуждение | вклад) |
Frolov (обсуждение | вклад) |
||
Строка 80: | Строка 80: | ||
=== Существующие реализации алгоритма === | === Существующие реализации алгоритма === | ||
+ | |||
+ | Ввиду малораспространённости задачи нахождения частных сумм в библиотеках программ данный алгоритм обычно не содержится. | ||
== Литература == | == Литература == |
Версия 14:47, 12 августа 2015
Основные авторы описания: А.В.Фролов
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод сдваивания используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового получения частичных сумм). Получил распространение благодаря наименьшей из возможных высоте алгоритма.
1.2 Математическое описание алгоритма
Исходные данные: одномерный массив [math]n[/math] чисел.
Вычисляемые данные: частичные суммы первых [math]i[/math] элементов массива, где [math]i[/math] принимает все значения от [math]1[/math] до [math]n[/math].
Формулы метода: элементы на первом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её соседних элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д. По нахождению тех частных сумм, где [math]i[/math] является степенью двойки, формулы повторяют Нахождение суммы элементов массива сдваиванием. Однако, кроме этого, для каждой пары (например, для нахождения суммы [math]x_i+...+x_{i+k}[/math] и [math]x_{i+k+1} +...+ x_{i+2k}[/math])дополнительно вычисляются все частные суммы от [math]x_i+...+x_{i+k+1}[/math] до [math]x_i+...+x_{i+2k-1}[/math].
1.3 Вычислительное ядро алгоритма
Вычислительное ядро последовательно-параллельного метода суммирования можно составить из элементарных бинарных (всего [math]\frac{n}{2} log_2 n[/math]) вычислений сумм.
1.4 Макроструктура алгоритма
Как уже записано в описании ядра алгоритма, основную часть метода составляют элементарные бинарные (всего [math]\frac{n}{2} log_2 n[/math]) вычисления сумм.
1.5 Схема реализации последовательного алгоритма
В описанном виде суммирование сдваиванием не используют при последовательной реализации, поскольку кроме усложнения общей схемы алгоритма и резкого роста потребности в памяти, нужной для хранения промежуточных данных, сам по себе алгоритм содержит подавляющее большинство избыточных вычислений: по сравнению с последовательным алгоритмом нахождения частных сумм количество операций больше в [math]\frac{1}{2} log_2 n[/math] раз.
1.6 Последовательная сложность алгоритма
Для вычисления суммы массива, состоящего из [math]n[/math] элементов, количество операций равно [math]\frac{n}{2} log_2 n[/math]. Поэтому алгоритм должен быть отнесён к алгоритмам линейно-логарифмической сложности по количеству последовательных операций.
1.7 Информационный граф
Граф алгоритма изображён на рисунке.
1.8 Ресурс параллелизма алгоритма
Для вычисления частичных сумм массива порядка [math]n[/math] методом сдваивания в параллельном варианте требуется последовательно выполнить [math]\lceil \log_2 n \rceil[/math] ярусов с одинаковым ([math]\frac{n}{2}[/math]) количеством операций суммирования. При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с логарифмической сложностью. При классификации по ширине ЯПФ его сложность будет линейной.
1.9 Входные и выходные данные алгоритма
Входные данные: массив [math]x[/math] (элементы [math]x_i[/math]).
Дополнительные ограничения: отсутствуют.
Объём входных данных: [math]n[/math].
Выходные данные: все частичные суммы первых [math]i[/math] элементов массива, где [math]i[/math] принимает все значения от [math]1[/math] до [math]n[/math].
Объём выходных данных: [math]n[/math].
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является [math]\frac{n}{2}[/math] (отношение линейно-логарифмической к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — логарифмическая :[math]\frac{1}{2} log_2 n[/math]. Это, однако, обусловлено избыточностью вычислений, реальная мощность - константа (1). При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа (кроме дополнительных измерений в случае расположения вершин в гиперкубе).
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
Сдваивание, из-за сильной избыточности вычислений, вряд ли может быть применено на компьютерах без параллельных устройств.
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
Из-за своеобразия графа сдваивания лучше всего он отображается на архитектуру типа "гиперкуб". Поэтому для архитектур с массовым параллелизмом представляется неизбежным рост накладных расходов и слабая масштабируемость алгоритма.
2.7 Существующие реализации алгоритма
Ввиду малораспространённости задачи нахождения частных сумм в библиотеках программ данный алгоритм обычно не содержится.