|
|
Строка 40: |
Строка 40: |
| | | |
| == Программная реализация алгоритма == | | == Программная реализация алгоритма == |
− | Вторая часть описания алгоритмов в рамках AlgoWiki рассматривает все составные части процесса их реализации. Рассматривается как последовательная реализация алгоритма, так и параллельная. Описывается взаимосвязь свойств программ, реализующих алгоритм, и особенностей архитектуры компьютера, на которой они выполняются. Исследуется работа с памятью, локальность данных и вычислений, описывается масштабируемость и эффективность параллельных программ, производительность компьютеров, достигаемая на данной программе. Обсуждаются особенности реализации для разных классов архитектур компьютеров, приводятся ссылки на реализации в существующих библиотеках.
| |
− |
| |
| === Особенности реализации последовательного алгоритма === | | === Особенности реализации последовательного алгоритма === |
− | Здесь описываются особенности и варианты реализации алгоритма в виде последовательной программы, которые влияют на [[глоссарий#Эффективность реализации|''эффективность ее выполнения'']]. В частности, в данном разделе имеет смысл ''сказать о существовании блочных вариантов реализации алгоритма'', дополнительно описав потенциальные преимущества или недостатки, сопровождающие такую реализацию. Важный вопрос - это ''возможные варианты организации работы с данными'', варианты структур данных, наборов временных массивов и другие подобные вопросы. Для различных вариантов реализации следует оценить доступный ресурс параллелизма и объем требуемой памяти.
| |
− |
| |
− | Важным нюансом является ''описание необходимой разрядности выполнения операций алгоритма'' (точности). На практике часто нет никакой необходимости выполнять все арифметические операции над вещественными числами с двойной точностью, т.к. это не влияет ни на устойчивость алгоритма, ни на точность получаемого результата. В таком случае, если значительную часть операций можно выполнять над типом float, и лишь в некоторых фрагментах необходим переход к типу double, это обязательно нужно отметить. Это прямое указание не только на правильную реализацию с точки зрения устойчивости по отношению к ошибкам округления, но и на более эффективную.
| |
− |
| |
− | Опираясь на информацию из [[#Описание ресурса параллелизма алгоритма|п.1.8]] (описание ресурса параллелизма алгоритма), при описании последовательной версии стоит сказать про возможности [[глоссарий#Эквивалентное преобразование|''эквивалентного преобразования программ'']], реализующих данных алгоритм. В дальнейшем, это даст возможность простого использования доступного параллелизма или же просто покажет, как использовать присущий алгоритму параллелизм на практике. Например, параллелизм на уровне итераций самого внутреннего цикла обычно используется для векторизации. Однако, в некоторых случаях этот параллелизм можно поднять "вверх" по структуре вложенности объемлющих циклов, что делает возможной и эффективную реализацию данного алгоритма на многоядерных SMP-компьютерах.
| |
− |
| |
− | С этой же точки зрения, в данном разделе весьма полезны соображения по реализации алгоритма на различных параллельных вычислительных платформах. Высокопроизводительные кластеры, многоядерные узлы, возможности для векторизации или использования ускорителей - особенности этих архитектур не только опираются на разные свойства алгоритмов, но и по-разному должны быть выражены в программах, что также желательно описать в данном разделе.
| |
| | | |
| === Локальность данных и вычислений === | | === Локальность данных и вычислений === |
− | Вопросы локальности данных и вычислений не часто изучаются на практике, но именно локальность определяет эффективность выполнения программ на современных вычислительных платформах <ref>Воеводин В.В., Воеводин Вад.В. Спасительная локальность суперкомпьютеров //Открытые системы. - 2013. - № 9. - С. 12-15.</ref><ref>Воеводин Вад.В., Швец П. Метод покрытий для оценки локальности использования данных в программах // Вестник УГАТУ. — 2014. — Т. 18, № 1(62). — С. 224–229.</ref>. В данном разделе приводятся оценки степени [[глоссарий#Локальность использования данных|''локальности данных'']] и [[глоссарий#Локальность вычислений|вычислений]] в программе, причем рассматривается как [[глоссарий#Временная локальность|''временна́я'']], так и [[глоссарий#Пространственная локальность|''пространственная'']] локальность. Отмечаются позитивные и негативные факты, связанные с локальностью, какие ситуации и при каких условиях могут возникать. Исследуется, как меняется локальность при переходе от последовательной реализации к параллельной. Выделяются ключевые шаблоны взаимодействия программы, реализующей описываемый алгоритм, с памятью. Отмечается возможная взаимосвязь между используемыми конструкциями языков программирования и степенью локальности, которыми обладают результирующие программы.
| |
− |
| |
− | Отдельно приводятся профили взаимодействия с памятью для вычислительных ядер и ключевых фрагментов. Если из-за большого числа обращений по общему профилю сложно понять реальную специфику взаимодействия программ с памятью, то проводится последовательная детализация и приводится серия профилей более мелкого масштаба.
| |
− |
| |
− | На рис.3 и рис.4 показаны профили обращения в память для программ, реализующих разложение Холецкого и быстрое преобразование Фурье, по которым хорошо видна разница свойств локальности у данных алгоритмов.
| |
− |
| |
− | [[file:Cholesky_locality1.jpg|thumb|center|700px|Рис.3 Реализация метода Холецкого. Общий профиль обращений в память]]
| |
− | [[file:fft 1.PNG|thumb|center|700px|Рис.4 Нерекурсивная реализация БПФ для степеней двойки. Общий профиль обращений в память]]
| |
− |
| |
| === Возможные способы и особенности параллельной реализации алгоритма === | | === Возможные способы и особенности параллельной реализации алгоритма === |
− | Раздел довольно обширный, в котором должны быть описаны основные факты и положения, формирующие параллельную программу. К их числу можно отнести:
| |
− | * представленный иерархически ресурс параллелизма, опирающийся на структуру циклических конструкций и на граф вызовов программы;
| |
− | * комбинацию (иерархию) массового параллелизма и параллелизма конечного;
| |
− | * возможные способы распределения операций между процессами/нитями;
| |
− | * возможные способы распределения данных;
| |
− | * оценку количества операций, объёма и числа пересылок данных (как общего числа, так и в пересчёте на каждый параллельный процесс);
| |
− |
| |
− | и другие.
| |
− |
| |
− | В этом же разделе должны быть даны рекомендации или сделаны комментарии относительно реализации алгоритма с помощью различных технологий параллельного программирования: MPI, OpenMP, CUDA или использования директив векторизации.
| |
| | | |
| === Масштабируемость алгоритма и его реализации === | | === Масштабируемость алгоритма и его реализации === |
− | Задача данного раздела - показать пределы [[глоссарий#Масштабируемость|''масштабируемости'']] алгоритма на различных платформах. Очень важный раздел. Нужно выделить, описать и оценить влияние точек барьерной синхронизации, глобальных операций, операций сборки/разборки данных, привести оценки или провести исследование [[глоссарий#Сильная масштабируемость|''сильной'']] и [[глоссарий#Слабая масштабируемость|''слабой'']] масштабируемости алгоритма и его реализаций.
| |
− |
| |
− | Масштабируемость алгоритма определяет свойства самого алгоритма безотносительно конкретных особенностей используемого компьютера. Она показывает, насколько параллельные свойства алгоритма позволяют использовать возможности растущего числа процессорных элементов. Масштабируемость параллельных программ определяется как относительно конкретного компьютера, так и относительно используемой технологии программирования, и в этом случае она показывает, насколько может вырасти реальная производительность данного компьютера на данной программе, записанной с помощью данной технологии программирования, при использовании бóльших вычислительных ресурсов (ядер, процессоров, вычислительных узлов).
| |
− |
| |
− | Ключевой момент данного раздела заключается в том, чтобы показать ''реальные параметры масштабируемости программы'' для данного алгоритма на различных вычислительных платформах в зависимости от числа процессоров и размера задачи <ref>Антонов А.С., Теплов А.М. О практической сложности понятия масштабируемости параллельных программ// Высокопроизводительные параллельные вычисления на кластерных системах (HPC 2014): Материалы XIV Международной конференции -Пермь: Издательство ПНИПУ, 2014. С. 20-27.</ref>. При этом важно подобрать такое соотношение между числом процессоров и размером задачи, чтобы отразить все характерные точки в поведении параллельной программы, в частности, достижение максимальной производительности, а также тонкие эффекты, возникающие, например, из-за блочной структуры алгоритма или иерархии памяти.
| |
− |
| |
− | На рис.5. показана масштабируемость классического алгоритма умножения плотных матриц в зависимости от числа процессоров и размера задачи. На графике хорошо видны области с большей производительностью, отвечающие уровням кэш-памяти.
| |
− | [[file:Масштабируемость перемножения матриц производительность.png|thumb|center|700px|Рис.5 Масштабируемость классического алгоритма умножения плотных матриц в зависимости от числа процессоров и размера задачи]]
| |
| | | |
| === Динамические характеристики и эффективность реализации алгоритма === | | === Динамические характеристики и эффективность реализации алгоритма === |
− | Это объемный раздел AlgoWiki, поскольку оценка эффективности реализации алгоритма требует комплексного подхода <ref>Никитенко Д.А. Комплексный анализ производительности суперкомпьютерных систем, основанный на данных системного мониторинга // Вычислительные методы и программирование. 2014. 15. 85–97.</ref>, предполагающего аккуратный анализ всех этапов от архитектуры компьютера до самого алгоритма. Основная задача данного раздела заключается в том, чтобы оценить степень эффективности параллельных программ, реализующих данный алгоритм на различных платформах, в зависимости от числа процессоров и размера задачи. Эффективность в данном разделе понимается широко: это и [[глоссарий#Эффективность распараллеливания|''эффективность распараллеливания'']] программы, это и [[глоссарий#Эффективность реализации|''эффективность реализации'']] программ по отношению к пиковым показателям работы вычислительных систем.
| |
− |
| |
− | Помимо собственно показателей эффективности, нужно описать и все основные причины, из-за которых эффективность работы параллельной программы на конкретной вычислительной платформе не удается сделать выше. Это не самая простая задача, поскольку на данный момент нет общепринятой методики и соответствующего инструментария, с помощью которых подобный анализ можно было бы провести. Требуется оценить и описать эффективность работы с памятью (особенности профиля взаимодействия программы с памятью), эффективность использования заложенного в алгоритм ресурса параллелизма, эффективность использования коммуникационной сети (особенности коммуникационного профиля), эффективность операций ввода/вывода и т.п. Иногда достаточно интегральных характеристик по работе программы, в некоторых случаях полезно показать данные мониторинга нижнего уровня, например, по загрузке процессора, кэш-промахам, интенсивности использования сети Infiniband и т.п. Хорошее представление о работе параллельной MPI-программы дают данные трассировки, полученные, например, с помощью системы Scalasca.
| |
− |
| |
| === Выводы для классов архитектур === | | === Выводы для классов архитектур === |
− | В данный раздел должны быть включены рекомендации по реализации алгоритма для разных классов архитектур. Если архитектура какого-либо компьютера или платформы обладает специфическими особенностями, влияющими на эффективность реализации, то это здесь нужно отметить.
| |
− |
| |
− | На практике это сделать можно по-разному: либо все свести в один текущий раздел, либо же соответствующие факты сразу включать в предшествующие разделы, где они обсуждаются и необходимы по смыслу. В некоторых случаях, имеет смысл делать отдельные варианты всей [[#ЧАСТЬ. Программная реализация алгоритмов|части II]] AlgoWiki применительно к отдельным классам архитектур, оставляя общей машинно-независимую [[#ЧАСТЬ. Свойства и структура алгоритмов|часть I]]. В любом случае, важно указать и позитивные, и негативные факты по отношению к конкретным классам. Можно говорить о возможных вариантах оптимизации или даже о "трюках" в написании программ, ориентированных на целевые классы архитектур.
| |
| | | |
| === Существующие реализации алгоритма === | | === Существующие реализации алгоритма === |
− | Для многих пар алгоритм+компьютер уже созданы хорошие реализации, которыми можно и нужно пользоваться на практике. Данный раздел предназначен для того, чтобы дать ссылки на основные существующие последовательные и параллельные реализации алгоритма, доступные для использования уже сейчас. Указывается, является ли реализация коммерческой или свободной, под какой лицензией распространяется, приводится местоположение дистрибутива и имеющихся описаний. Если есть информация об особенностях, достоинствах и/или недостатках различных реализаций, то это также нужно здесь указать. Хорошими примерами реализации многих алгоритмов являются MKL, ScaLAPACK, PETSc, FFTW, ATLAS, Magma и другие подобные библиотеки.
| |
| | | |
| == Литература == | | == Литература == |
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
EM-алгоритм (англ. expectation-maximization) - алгоритм итерационного типа для численного решения задачи поиска экстремума целевой функции в разнообразных задачах оптимизации. В частности, алгоритм используется в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных. Каждая итерация алгоритма состоит из двух шагов. На E-шаге (expectation) вычисляется ожидаемое значение функции правдоподобия, при этом скрытые переменные рассматриваются как наблюдаемые. На M-шаге (maximization) вычисляется оценка максимального правдоподобия, таким образом увеличивается ожидаемое правдоподобие, вычисляемое на E-шаге. Затем это значение используется для E-шага на следующей итерации. Алгоритм выполняется до сходимости.
Как правило, ЕМ-алгоритм применяется для решения задач двух типов.
• К первому типу можно отнести задачи, связанные с анализом действительно неполных данных, когда некоторые статистические данные отсутствуют в силу каких-либо причин.
• Ко второму типу задач можно отнести статистические задачи, в которых функция правдоподобия имеет вид, не допускающий удобных аналитических методов исследования, но допускающий серьезные упрощения, если в задачу ввести дополнительные «ненаблюдаемые» (скрытые, латентные) переменные. Примерами прикладных задач второго типа являются задачи распознавания образов, реконструкции изображений. Математическую суть данных задач составляют задачи кластерного анализа, классификации и разделения смесей вероятностных распределений.
1.2 Математическое описание алгоритма
Задача отыскания наиболее правдопободных оценок параметров смесей вероятностных распределений является одним из самых популярных приложений ЕМ-алгоритма.
Базовым предположением в рамках данной задачи является то, что плотность наблюдаемой случайной величины [math]Χ[/math] имеет вид:
[math]f_{θ}^{X}=Σ_{i=1}^{k}p_{i}ψ_{i}(x; t_{i}),[/math]
где [math]k\geqslant 1[/math] - известное натуральное число, [math]ψ_{1}, ..., ψ_{k}[/math] - известные плотности распределения, неизвестный параметр [math]θ[/math] имеет вид [math]θ=(p_{1}, ..., p_{k}, t_{1},..., t_{k}),[/math] причем [math]p_{i}\geqslant 0,[/math] [math]i = 1, ..., k,[/math] [math] p_{1}+...+p_{k}=1,[/math] [math]t_{i},[/math] [math] i=1,...,k,[/math] - вообще говоря, многомерные параметры. Плотности [math]ψ_{1}, ..., ψ_{k}[/math] будем называть компонентами смеси, параметры [math]p_{1}, ..., p_{k}[/math] будем называть весами соответствующих компонент.
Задачей разделения смеси принято называть задачу статистического оценивания параметров [math]θ=(p_{1}, ..., p_{k}, t_{1},..., t_{k}),[/math] по известным реализациям случайно величины [math]Χ[/math].
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
↑ В.Ю. Королев "Вероятностно-статистические методы декомпозиции волатильности хаотических процессов".
↑ В. Ю. Королев, А. Ю. Корчагин, А. И. Зейфман "Теорема Пуассона для схемы испытаний Бернулли со случайной вероятностью успеха и дискретный аналог распределения Вейбулла"
↑ http://www.machinelearning.ru/wiki/index.php?title=EM-алгоритм