Участник:Bkmish/Сортировка слиянием (последовательный и параллельный варианты): различия между версиями
Bkmish (обсуждение | вклад) |
Bkmish (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
Алгоритм '''сортировки слиянием''' (англ. ''merge sort'') является методом упорядочивания списков или других структур данных, в которых доступ к элементам может быть получен только последовательно. Этот алгоритм был разработан Джоном фон Нейманом в 1945 году и является хорошим примером использования принципа «разделяй и властвуй», поскольку основан на разбиении главной задачи на более мелкие подзадачи, которые решаются, например, с помощью рекурсивного вызова или непосредственно, если количество элементов рассматриваемой структуры достаточно мало. После этого полученные результаты комбинируются для получения решения основной задачи. | Алгоритм '''сортировки слиянием''' (англ. ''merge sort'') является методом упорядочивания списков или других структур данных, в которых доступ к элементам может быть получен только последовательно. Этот алгоритм был разработан Джоном фон Нейманом в 1945 году и является хорошим примером использования принципа «разделяй и властвуй», поскольку основан на разбиении главной задачи на более мелкие подзадачи, которые решаются, например, с помощью рекурсивного вызова или непосредственно, если количество элементов рассматриваемой структуры достаточно мало. После этого полученные результаты комбинируются для получения решения основной задачи. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Математическое описание алгоритма === | === Математическое описание алгоритма === | ||
Строка 35: | Строка 25: | ||
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
+ | |||
+ | '''Последовательная версия''' алгоритма сортировки слиянием имеет временную сложность <math display="inline">\Theta(n \log n)</math> в лучшем, среднем и худшем случаях. Это происходит потому, что алгоритм разделяет массив на две половины на каждом уровне рекурсии (что требует <math>\log n</math> уровней), а затем сливает <math>n</math> элементов на каждом уровне, что дает общую временную сложность <math display="inline">\Theta(n \log n)</math> | ||
=== Информационный граф === | === Информационный граф === | ||
=== Ресурс параллелизма алгоритма === | === Ресурс параллелизма алгоритма === | ||
+ | |||
+ | Ресурсом параллелизма в данном алгоритме является возможность независимого выполнения рекурсивных вызовов функции ''mergesort()'' для левой и правой половин массива. Эти вызовы обрабатывают разные части данных и не зависят друг от друга, что позволяет выполнять их одновременно на разных потоках. | ||
+ | |||
+ | '''Параллельная версия''' алгоритма сортировки слиянием может быть выполнена с использованием различных подходов и, следовательно, имеет различные временные сложности. Так, используя один из алгоритмов распараллеливания, приведенный ниже в пункте 2.3, можно достичь сложности <math display="inline">\Theta(\log^2 n)</math> | ||
+ | |||
+ | В параллельной сортировке слиянием с использованием мы распараллеливаем рекурсивные вызовы сортировки для левой и правой половин массива. Это означает, что в идеальном случае (когда количество потоков неограниченно и затраты на создание потоков и синхронизацию между ними игнорируются) оба этих вызова могут выполняться одновременно. Таким образом, максимальное время, необходимое для сортировки половин массива, будет <math display="inline">\log n</math> (а не <math display="inline">2\log n</math>, как было бы при последовательной сортировке), что дает нам временную сложность <math display="inline">\Theta(\log n)</math> для сортировки каждой половины массива. | ||
+ | |||
+ | После того как обе половины массива отсортированы, нам еще нужно их объединить. Этот шаг выполняется последовательно и имеет временную сложность <math display="inline">\Theta(n)</math>. Если мы считаем, что время слияния доминирует над временем сортировки половин массива (что может быть верно для больших массивов), то общая временная сложность алгоритма будет <math display="inline">\Theta(n \log n)</math>, как и для последовательной сортировки слиянием. | ||
+ | |||
+ | Однако, если мы считаем, что время слияния не доминирует (что может быть верно для маленьких массивов), то общая временная сложность алгоритма будет <math display="inline">\Theta(\log^2 n)</math>. Это получается из-за того, что мы делаем <math display="inline">\log n</math> рекурсивных вызовов, и в каждом вызове мы выполняем операцию, которая требует <math display="inline">\log n</math> времени (то есть, сортировку половины массива) | ||
=== Входные и выходные данные алгоритма === | === Входные и выходные данные алгоритма === |
Версия 15:36, 21 ноября 2023
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм сортировки слиянием (англ. merge sort) является методом упорядочивания списков или других структур данных, в которых доступ к элементам может быть получен только последовательно. Этот алгоритм был разработан Джоном фон Нейманом в 1945 году и является хорошим примером использования принципа «разделяй и властвуй», поскольку основан на разбиении главной задачи на более мелкие подзадачи, которые решаются, например, с помощью рекурсивного вызова или непосредственно, если количество элементов рассматриваемой структуры достаточно мало. После этого полученные результаты комбинируются для получения решения основной задачи.
1.2 Математическое описание алгоритма
В общем виде алгоритм сортировки слиянием выглядит следующим образом:
- Разделение: исходный массив разделяется на две равные или приближенно равные части. Если массив состоит из одного элемента, он считается отсортированным. Если массив содержит более одного элемента, процесс разделения продолжается рекурсивно, пока в подмассивах не останется по одному элементу, такие подмассивы по определению считаются отсортированными.
- Сортировка и слияние: отсортированные подмассивы сливаются в один. Процесс слияния осуществляется путем сравнения первых элементов каждого подмассива. Меньший элемент перемещается в результирующий массив, и индекс в соответствующем подмассиве увеличивается на единицу. Этот процесс продолжается, пока не будут исчерпаны все элементы в обоих подмассивах
1.3 Вычислительное ядро алгоритма
Вычислительное ядро алгоритма сортировки слиянием − это процесс (состоящий из сравнений элементов и перемещения оставшихся элементов) слияния двух отсортированных подмассивов в один отсортированный массив. Этот процесс занимает большую часть времени работы алгоритма.
1.4 Макроструктура алгоритма
Макроструктура предложенного алгоритма сортировки слиянием состоит из двух макроопераций, соответствующих этапам алгоритма:
- mergesort: это рекурсивная функция, которая реализует алгоритм сортировки слиянием. Она делит массив на две половины, параллельно сортирует их, а затем сливает в один отсортированный массив;
- merge: эта функция сливает два отсортированных подмассива, полученных в результате предыдущей макрооперации, в один отсортированный массив.
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Последовательная версия алгоритма сортировки слиянием имеет временную сложность [math]\Theta(n \log n)[/math] в лучшем, среднем и худшем случаях. Это происходит потому, что алгоритм разделяет массив на две половины на каждом уровне рекурсии (что требует [math]\log n[/math] уровней), а затем сливает [math]n[/math] элементов на каждом уровне, что дает общую временную сложность [math]\Theta(n \log n)[/math]
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
Ресурсом параллелизма в данном алгоритме является возможность независимого выполнения рекурсивных вызовов функции mergesort() для левой и правой половин массива. Эти вызовы обрабатывают разные части данных и не зависят друг от друга, что позволяет выполнять их одновременно на разных потоках.
Параллельная версия алгоритма сортировки слиянием может быть выполнена с использованием различных подходов и, следовательно, имеет различные временные сложности. Так, используя один из алгоритмов распараллеливания, приведенный ниже в пункте 2.3, можно достичь сложности [math]\Theta(\log^2 n)[/math]
В параллельной сортировке слиянием с использованием мы распараллеливаем рекурсивные вызовы сортировки для левой и правой половин массива. Это означает, что в идеальном случае (когда количество потоков неограниченно и затраты на создание потоков и синхронизацию между ними игнорируются) оба этих вызова могут выполняться одновременно. Таким образом, максимальное время, необходимое для сортировки половин массива, будет [math]\log n[/math] (а не [math]2\log n[/math], как было бы при последовательной сортировке), что дает нам временную сложность [math]\Theta(\log n)[/math] для сортировки каждой половины массива.
После того как обе половины массива отсортированы, нам еще нужно их объединить. Этот шаг выполняется последовательно и имеет временную сложность [math]\Theta(n)[/math]. Если мы считаем, что время слияния доминирует над временем сортировки половин массива (что может быть верно для больших массивов), то общая временная сложность алгоритма будет [math]\Theta(n \log n)[/math], как и для последовательной сортировки слиянием.
Однако, если мы считаем, что время слияния не доминирует (что может быть верно для маленьких массивов), то общая временная сложность алгоритма будет [math]\Theta(\log^2 n)[/math]. Это получается из-за того, что мы делаем [math]\log n[/math] рекурсивных вызовов, и в каждом вызове мы выполняем операцию, которая требует [math]\log n[/math] времени (то есть, сортировку половины массива)
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- Левитин А. В. Глава 4. Метод декомпозиции: Сортировка слиянием // Алгоритмы. Введение в разработку и анализ — М.: Вильямс, 2006. — С. 169—172. — 576 с. — ISBN 978-5-8459-0987-9
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. — 2-е изд. — М.: Вильямс, 2005. — 1296 с. — ISBN 5-8459-0857-4.
- Victor J. Duvanenko "Parallel Merge Sort" Dr. Dobb's Journal & blog
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2009) [1990]. Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill. ISBN 0-262-03384-4. (p. 797-805)