Участник:KibAndrey/Ортогонализация Грама-Шмидта: различия между версиями
Перейти к навигации
Перейти к поиску
Amelie (обсуждение | вклад) |
Amelie (обсуждение | вклад) |
||
Строка 25: | Строка 25: | ||
\begin{align} | \begin{align} | ||
a_{1} & =b_{1}, \\ | a_{1} & =b_{1}, \\ | ||
− | \beta_{ij} & = \frac{(a_{i},b_j)}{(b_j,b_j)}=-\frac{(a_i,b_j)}{|b_j|^2}, \quad i \in [2, n], | + | \beta_{ij} & = \frac{(a_{i},b_j)}{(b_j,b_j)}=-\frac{(a_i,b_j)}{|b_j|^2}, \quad i \in [2, n], \quadj \in [1, n] |
\end{align} | \end{align} | ||
</math> | </math> |
Версия 22:19, 18 сентября 2016
Ортогонализация Грама-Шмидта | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^3)[/math] |
Объём входных данных | [math][/math] |
Объём выходных данных | [math][/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math][/math] |
Ширина ярусно-параллельной формы | [math][/math] |
Основные авторы описания: А.В.Кибанов, Т.З.Аджиева
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритма
1.1 Общее описание алгоритма
1.2 Математическое описание алгоритма
Исходные данные: [math]k[/math] векторов [math]a_1,a_2,...,a_n[/math] длины [math]n[/math] ([math]a_{ij}[/math], [math]j=1,2,...,n[/math], — координаты вектора [math]a_i[/math] ).
Вычисляемые данные: [math]k[/math] ортогональных векторов [math]b_1,b_2,...,b_n[/math] длины [math]n[/math], причем [math]b_1=a_1[/math].
Формулы метода:
- [math] \begin{align} a_{1} & =b_{1}, \\ \beta_{ij} & = \frac{(a_{i},b_j)}{(b_j,b_j)}=-\frac{(a_i,b_j)}{|b_j|^2}, \quad i \in [2, n], \quadj \in [1, n] \end{align} [/math]
Cуществует также модифицированная версия алгоритма, однако в данном описании разобран только классический алгоритм ортогонализации Грама-Шмидта.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 ЧАСТЬ Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
[1] Википедия [Электронный ресурс]. Тема: Процесс_Грама_―_Шмидта – Электрон. дан. – URL [1] (дата обращения 18.09.2016)