Участник:MelLain/ЕМ-алгоритм (Тематическое моделирование): различия между версиями
MelLain (обсуждение | вклад) |
MelLain (обсуждение | вклад) |
||
Строка 27: | Строка 27: | ||
<math>\Theta</math> - матрица результатов кластеризации обучающей коллекции по полученным темам размера <math>|T| \times |D|</math>, в ней столбцы также являются вероятностными распределениями, на этот раз документов на множестве тем. | <math>\Theta</math> - матрица результатов кластеризации обучающей коллекции по полученным темам размера <math>|T| \times |D|</math>, в ней столбцы также являются вероятностными распределениями, на этот раз документов на множестве тем. | ||
− | Фактически, PLSA есть ни что иное, как задача приближённого стохастического матричного разложения, в ходе которой производится мягкая бикластеризация данных (мягкая - потому что объекты распределяются по классам не строго, а с некоторой вероятностью, би - потому что производится одновременная кластрезация слов по темам, и тем - по документам). | + | Фактически, PLSA есть ни что иное, как задача приближённого стохастического матричного разложения, в ходе которой производится мягкая бикластеризация данных (мягкая - потому что объекты распределяются по классам не строго, а с некоторой вероятностью, би - потому что производится одновременная кластрезация слов по темам, и тем - по документам). Поставленную задачу можно решать методом максимального правдоподобия, с помощью ЕМ-алгоритма. |
В данной статье будут расматриваться только плотные матрицы (хотя при определённых условиях можно эффективно использовать разреженные). | В данной статье будут расматриваться только плотные матрицы (хотя при определённых условиях можно эффективно использовать разреженные). | ||
==== Математическое описание ЕМ-алгоритма ==== | ==== Математическое описание ЕМ-алгоритма ==== | ||
+ | |||
+ | Задача максимизации правдоподобия для описанной модели имеет следующий вид: | ||
+ | |||
+ | :<math> | ||
+ | \begin{align} | ||
+ | \mathcal{L}(\Phi, \Theta) = \sum_{d \in D}\sum_{w \in d} n_{dw} \,\mathrm{ln}(\sum_{t \in T} \phi_{wt} \theta_{td}) \rightarrow \underset{\Phi, \Theta}{\mathrm{max}} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | :<math> | ||
+ | \begin{align} | ||
+ | \sum_{w \in W} \phi_{wt} = 1, \, \forall t \in T, \quad \phi_{wt} \ge 0; | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | :<math> | ||
+ | \begin{align} | ||
+ | \sum_{t \in T} \theta_{td} = 1, \, \forall d \in D, \quad \theta_{td} \ge 0. | ||
+ | \end{align} | ||
+ | </math> | ||
Ем-алгоритм для тематического моделирования, как и любой другой, состоит в следующем. Выбираются нек | Ем-алгоритм для тематического моделирования, как и любой другой, состоит в следующем. Выбираются нек |
Версия 01:18, 23 сентября 2016
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Тематическое моделирование - одно из направлений статистического анализа текстовых коллекций в машинном обучении. В литературе описываются многочисленные разновидности моделей, а также методов их обучения. В данной статье будет рассмотрена тематическая модель вероятностного латентного семантического анализа (PLSA), и процесс её обучения с помощью параллельного ЕМ-алгоритма.
Существует множество разновидностей ЕМ-алгоритмов, ориентированных на учёт тех или иные аспектов решаемой задачи. Наиболее простым вариантом является т.н. оффлайновый алгоритм, непригодный для работы с большими текстовыми данными в силу значительных требований к потребляемой оперативной памяти. Существует ряд модернизаций этого алгоритма, позволяющих избавить его от ряда недостатков. Наилучшей из них является онлайновый вариант алгоритма. Тем не менее, в силу относительно высокой сложности его эффективной параллельной реализации, в данной статье будет рассматриваться гибридный вариант алгоритма, избавленный от большинства недостатков оффлайнового, но имеющий меньшую скорость сходимости, чем онлайновый.
1.2 Математическое описание
1.2.1 Математическое описание модели
В большинстве тематических моделей коллекция текстов рассматривается в виде "мешка слов", т.е. модель учитывает только статистическую встречаемость слов в документах и никак не использует информацию об их взаимном расположении внутри документа.
Вероятностная модель PLSA имеет следующий вид:
- [math] \begin{align} F \approx \Phi \times \Theta \end{align} [/math]
Здесь [math]F[/math] - это матрица исходных данных размера [math]|W| \times |D|[/math], где [math]D[/math] - это множество документов, а [math]W[/math] - словарь коллекции, т.е. множество всех уникальных слов, встретившихся в документах.
[math]\Phi[/math] - это матрица параметров модели размера [math]|W| \times |T|[/math], где [math]T[/math] - это множество тем, которые мы хотим извлечь из коллекции. Под темой в бытовом смысле смысле понимается набор слов, характеризующих её. Формально говоря, тема - это вероятностное распределение на множестве слов [math]W[/math], поэтому матрица [math]\Phi[/math] является стохастической, т.е. столбцы её неотрицательны и суммируются в единицу.
[math]\Theta[/math] - матрица результатов кластеризации обучающей коллекции по полученным темам размера [math]|T| \times |D|[/math], в ней столбцы также являются вероятностными распределениями, на этот раз документов на множестве тем.
Фактически, PLSA есть ни что иное, как задача приближённого стохастического матричного разложения, в ходе которой производится мягкая бикластеризация данных (мягкая - потому что объекты распределяются по классам не строго, а с некоторой вероятностью, би - потому что производится одновременная кластрезация слов по темам, и тем - по документам). Поставленную задачу можно решать методом максимального правдоподобия, с помощью ЕМ-алгоритма.
В данной статье будут расматриваться только плотные матрицы (хотя при определённых условиях можно эффективно использовать разреженные).
1.2.2 Математическое описание ЕМ-алгоритма
Задача максимизации правдоподобия для описанной модели имеет следующий вид:
- [math] \begin{align} \mathcal{L}(\Phi, \Theta) = \sum_{d \in D}\sum_{w \in d} n_{dw} \,\mathrm{ln}(\sum_{t \in T} \phi_{wt} \theta_{td}) \rightarrow \underset{\Phi, \Theta}{\mathrm{max}} \end{align} [/math]
- [math] \begin{align} \sum_{w \in W} \phi_{wt} = 1, \, \forall t \in T, \quad \phi_{wt} \ge 0; \end{align} [/math]
- [math] \begin{align} \sum_{t \in T} \theta_{td} = 1, \, \forall d \in D, \quad \theta_{td} \ge 0. \end{align} [/math]
Ем-алгоритм для тематического моделирования, как и любой другой, состоит в следующем. Выбираются нек