Участница:Эльвира Ахиярова/Итерационный метод решения системы линейных алгебраических уравнений GMRES (обобщенный метод минимальных невязок): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 1: Строка 1:
 
== Свойства и структура алгоритма ==
 
== Свойства и структура алгоритма ==
 
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
 
+
Метод минимальных невязок(GMRES) является итерационным методом нахождения решения для системы линейных алгебраических уравнений с произвольной невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова.
 +
GMRES был предложен Йозефом Саадом и Мартином Шульцем в 1986 году.<ref>Commandant Benoit, Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky), Bulletin Géodésique 2 (1924), 67-77.</ref>
 
=== Математическое описание алгоритма ===
 
=== Математическое описание алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
Строка 12: Строка 12:
 
=== Входные и выходные данные алгоритма ===
 
=== Входные и выходные данные алгоритма ===
 
=== Свойства алгоритма ===
 
=== Свойства алгоритма ===
 +
In mathematics, the generalized minimal residual method (usually abbreviated GMRES) is an iterative method for the numerical solution of a nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.
 +
 +
The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986.[1] GMRES is a generalization of the MINRES method developed by Chris Paige and Michael Saunders in 1975. GMRES also is a special case of the DIIS method developed by Peter Pulay in 1980. DIIS is also applicable to non-linear systems.
  
 
== Программная реализация алгоритма ==
 
== Программная реализация алгоритма ==

Версия 19:58, 27 сентября 2016

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод минимальных невязок(GMRES) является итерационным методом нахождения решения для системы линейных алгебраических уравнений с произвольной невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова. GMRES был предложен Йозефом Саадом и Мартином Шульцем в 1986 году.[1]

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

In mathematics, the generalized minimal residual method (usually abbreviated GMRES) is an iterative method for the numerical solution of a nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986.[1] GMRES is a generalization of the MINRES method developed by Chris Paige and Michael Saunders in 1975. GMRES also is a special case of the DIIS method developed by Peter Pulay in 1980. DIIS is also applicable to non-linear systems.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Commandant Benoit, Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky), Bulletin Géodésique 2 (1924), 67-77.