Участник:Бротиковская Данута/Алгоритм k-means: различия между версиями
Перейти к навигации
Перейти к поиску
Строка 13: | Строка 13: | ||
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
− | Алгоритм <b>k средних</b> (<b>k means</b>) -- наиболее популярный метод кластеризации. Был изобретен в 1950-х годах математиком <i>Гуго Штейнгаузом</i> | + | Алгоритм <b>k средних</b> (<b>k means</b>) -- наиболее популярный метод кластеризации. Был изобретен в 1950-х годах математиком <i>Гуго Штейнгаузом</i> и почти одновременно Стюартом Ллойдом. Особую популярность приобрел после публикации работы МакКуина в 1967. Цель алгоритма заключается в разделении N наблюдений на K кластеров таким образом, что каждое наблюдение придележит ровно одному (наиболее близкому) кластеру. |
=== Математическое описание алгоритма === | === Математическое описание алгоритма === |
Версия 17:56, 8 октября 2016
Алгоритм k средних (k means) | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^3)[/math] |
Объём входных данных | [math]\frac{n (n + 1)}{2}[/math] |
Объём выходных данных | [math]\frac{n (n + 1)}{2}[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]O(n)[/math] |
Ширина ярусно-параллельной формы | [math]O(n^2)[/math] |
Авторы страницы Данута Бротиковская и Денис Зобнин
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм k средних (k means) -- наиболее популярный метод кластеризации. Был изобретен в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Особую популярность приобрел после публикации работы МакКуина в 1967. Цель алгоритма заключается в разделении N наблюдений на K кластеров таким образом, что каждое наблюдение придележит ровно одному (наиболее близкому) кластеру.