Участник:Антон Тодуа/Partitioning Around Medoids (PAM): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 35: Строка 35:
 
<math>S = S + \{ arg\max_{i \in U} \sum_{j \in U - \{i\}} C_{ij} \}</math>
 
<math>S = S + \{ arg\max_{i \in U} \sum_{j \in U - \{i\}} C_{ij} \}</math>
  
'''Стадия ''SWAP''''' является итерационной, одна итерация состоит в попытке улучшить кластеризацию путём выполнения операции обмена, т.е. замены одного медоида на другой. На каждой итерации выполняется операция <math>arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}</math>. При этом если для найденной пары <math>i \in S</math> и <math>h \in U</math> значение <math>\sum_{j \in U - \{h\}} T_{ijh}</math> меньше ноля (это означает, что кластеризацию можно улучшить), то выполняется обмен <math>i</math> и <math>h</math> (<math>U = U - \{k\}, S = S + \{k\}</math>), иначе дальнейшее улучшение кластеризации невозможно и алгоритм завершает свою работу.
+
'''Стадия ''SWAP''''' является итерационной, одна итерация состоит в попытке улучшить кластеризацию путём выполнения операции обмена, т.е. замены одного медоида на другой. На каждой итерации выполняется операция <math>arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}</math>. Если для найденной пары <math>i \in S</math> и <math>h \in U</math> значение <math>\sum_{j \in U - \{h\}} T_{ijh}</math> меньше ноля (это означает, что кластеризацию можно улучшить), то выполняется обмен <math>i</math> и <math>h</math> (<math>U = U - \{k\}, S = S + \{k\}</math>), иначе дальнейшее улучшение кластеризации невозможно и алгоритм завершает свою работу.
  
  

Версия 14:23, 11 октября 2016

Основные авторы описания: Тодуа А.Р., Гусева Ю.В.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Самый распространённый вариант реализации [math]k[/math]-medoids называется PAM (Partitioning Around Medoids). Он представляет собой «жадный» алгоритм с очень неэффективной эвристикой. Данный метод был предложен Кауфманом в 1987 году.

Алгоритм начинается с выбора набора данных, состоящих из медоидов и остальных объектов. После выбора [math]k[/math] произвольных объектов в качестве медоидов, необходимо для каждой пары [math]{x_i}[/math] и [math]{m_k}[/math] вычислить значение [math]S({x_{i}}{m_{k}})[/math]. По ходу выполнения алгоритма происходит итеративная замена одного из медоидов [math]x_i[/math] одним из остальных объектов [math]m_k[/math], если посчитанное ранее значение [math]S[/math] меньше нуля. Процесс будет повторятся, пока медоиды не стабилизируются.

1.2 Математическое описание алгоритма

В качестве исходных данных алгоритм принимает:

  • Симметрическую матрицу [math]D[/math] порядка [math]N[/math] с нолями на главной диагонали для [math]N[/math] объектов кластеризации: [math]i[/math]-я строка матрицы [math]D[/math] определяет непохожесть [math]i[/math]-го объекта кластеризации на все остальные объекты
  • Число кластеров [math]K[/math], при этом: [math]K \lt N[/math]

Для заданных входных данных, алгоритм выбирает [math]K[/math] объектов - медоидов (medoids) из [math]N[/math] объектов кластеризации. При этом выбор медоидов осуществляется исходя из минимизации средней непохожести (average dissimilarity) объектов и ближайшего к ним медоида. От минимизации средней непохожести можно перейти к минимизации суммы непохожестей объектов на ближайший к ним медоид, т.к. это не повлияет на выбор медоидов, но позволит не накапливать ошибки округления, возникающие в результате операции деления.

Для дальнейшего описания алгоритма введём следующие обозначения:

  • [math]U[/math] – множество объектов кластеризации, не выбранных в качестве медоидов
  • [math]S[/math] – множество объектов кластеризации, выбранных в качестве медоидов
  • [math]C_{ij}[/math] – изменение непохожести [math]j[/math]-го объекта в результате выбора [math]i[/math]-го объекта в качестве медоида
  • [math]T_{ijh}[/math] – изменение непохожести [math]j[/math]-го объекта в результате операции обмена, т.е. выбора [math]h[/math]-го объекта в качестве медоида, вместо [math]i[/math]-го объекта

Перед выполнением алгоритма множество [math]U[/math] содержит все объекты кластеризации, а множество [math]S[/math] – пусто.

Выполнение алгоритма включает в себя подготовительную стадию BUILD и итерационную стадию SWAP.

Стадия BUILD предназначена для построения начального множества медоидов и состоит в последовательном выполнении следующих шагов:

1. Добавить в множество [math]S[/math] объект, для которого сумма непохожести на все остальные объекты минимальна (самый центральный объект): [math]S = S + \{ arg\min_{i \in U} \sum_{j \in U} d_{ij} \}[/math]

2. Выбрать ещё [math]K-1[/math] медоидов следующим образом [math]S = S + \{ arg\max_{i \in U} \sum_{j \in U - \{i\}} C_{ij} \}[/math]

Стадия SWAP является итерационной, одна итерация состоит в попытке улучшить кластеризацию путём выполнения операции обмена, т.е. замены одного медоида на другой. На каждой итерации выполняется операция [math]arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}[/math]. Если для найденной пары [math]i \in S[/math] и [math]h \in U[/math] значение [math]\sum_{j \in U - \{h\}} T_{ijh}[/math] меньше ноля (это означает, что кластеризацию можно улучшить), то выполняется обмен [math]i[/math] и [math]h[/math] ([math]U = U - \{k\}, S = S + \{k\}[/math]), иначе дальнейшее улучшение кластеризации невозможно и алгоритм завершает свою работу.



  • [math]D_{i}[/math] – непохожесть [math]i[/math]-го объекта на ближайший к нему медоид
  • [math]E_{i}[/math] – непохожесть [math]i[/math]-го объекта на второй ближайший к нему медоид

Числа [math]D_{i}[/math] и [math]E_{i}[/math] могут измениться при изменениях в множествах [math]U[/math] и [math]S[/math].

2. Для каждого объекта [math]i \in U[/math] выполнить шаги 3-5

3. Для каждого объекта [math]j \in U - \{i\}[/math] вычислить [math]D_{j}[/math] и выполнить шаг 4

4. Положить [math]C_{ij} = max\{ D_{j} - d_{ij}, 0 \}[/math], мера улучшения кластеризации

5. Положить [math]g_{i} = \sum_{j \in U - \{i\}} C_{ij}[/math], улучшение от выбора [math]i[/math]-го объекта в качестве медоида

6. Выбрать объект, максимизирующий величину [math]g_{i}[/math] в качестве медоида:

[math] \begin{align} k & = arg\min_{i \in U} \sum_{j \in U} d_{ij} \\ U & = U - \{k\} \\ S & = S + \{k\} \\ \end{align} [/math]

7. Если множество [math]S[/math] содержит менее [math]K[/math] объектов (медоидов) перейти к шагу 2

8. КОНЕЦ стадии BUILD


Стадия SWAP (итерационное улучшение кластеризации):

1. Для всех возможных пар объектов [math]i \in S[/math] и [math]h \in U[/math] выполнить шаги 2-4

2. Вычислить эффект [math]T_{ih}[/math] от выполнения обмена объектов [math]i[/math] и [math]h[/math] (т.е. объект [math]i[/math] больше не выбран в качестве медоида, а объект [math]h[/math], наоборот, выбран в качестве медоида). Способ вычисления [math]T_{ih}[/math] описан ниже.

3. Положим [math](i', h') = arg\min_{i \in S, h \in U} T_{ih}[/math]

4. Если [math]T_{i'h'}[/math] больше 0 (т.е. кластеризацию можно улучшить), то выполняем обмен объектов [math]i[/math] и [math]h[/math] ([math]U = U - \{k\}, S = S + \{k\}[/math]) и переходим к шагу 1

5. КОНЕЦ стадии SWAP

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

В соответствии с приведённым выше математическим описанием последовательное выполнение алгоритма представляет собой выполнение стадии BUILD, а затем последовательное повторение итераций стадии SWAP до тех пор пока существует пара объектов (один из которых медоид, а другой – нет), которые можно обменять, чтобы улучшить кластер.

1.6 Последовательная сложность алгоритма

При описании последовательной сложности будем считать, что выполняется распределение [math]N[/math] объектов по [math]K[/math] кластерам. В соответствии с приведённым математическим описанием алгоритм включает в себя подготовительную стадию BUILD и итерационную стадию SWAP.

Стадия BUILD сводится к вычислению:

Одной операции [math]arg\min_{i} \sum_{j} d_{ij}[/math]
[math]K-1[/math] операций [math]arg\max_{i \in U} \sum_{j \in U - \{i\}} C_{ij}[/math]

Т.е. стадия BUILD требует:

[math]K * N^2[/math] операций сложения
[math]K * N[/math] операций сравнения (определения максимума/минимума)
Около [math]K * N^2[/math] вычислений [math]C_{ij}[/math]

Одна итерация стадии SWAP сводится к вычислению:

[math]arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}[/math]

Т.е. одна итерации стадии SWAP требует порядка:

[math]K * N^2[/math] операций сложения
[math]K * N[/math] операций сравнения (определения максимума/минимума)
[math]K * (N - K) * (N - K - 1)[/math] вычислений [math]T_{ijh}[/math]

Вычисления [math]C_{ij}[/math] и [math]T_{ijh}[/math] имеют константную сложность для любых [math]i[/math], [math]j[/math] и [math]h[/math], поэтому сложность одной итерации алгоритма определяется как [math]O(K * N^2)[/math]. Таким образом можно отнести алгоритм PAM к алгоритмам с кубической сложностью.

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные:

1. Матрица непохожести объектов кластеризации (dissimilarity matrix) [math]D[/math] (элементы [math]d_{ij}[/math]).
Дополнительные ограничения:
- [math]D[/math] – симметрическая матрица порядка [math]N[/math], т.е. [math]d_{ij}= d_{ji}, i, j = 1, \ldots, N[/math]
- [math]D[/math] – содержит нули на главной диагонали, т.е. [math]d_{ii}= 0, i = 1, \ldots, N[/math]
2. [math]K[/math] - число кластеров, на которое следует разбить объекты кластеризации

Объём входных данных:

[math]\frac{N (N - 1)}{2}[/math] (в силу симметричности и нулевой главной диагонали достаточно хранить только  над/поддиагональные элементы). В разных реализациях эта экономия хранения может быть выполнена разным образом. 

Выходные данные:

[math]N[/math] чисел [math]k_{1}, k_{2}, \ldots, k_{N}[/math], где [math]k_{i}[/math] - целое число, соответствующее кластеру [math]i[/math]-го объекта.
Выходными данными алгоритма также можно считать [math]K[/math] чисел, задающих номера объектов кластеризации, выделенных в качестве медоидов (medoids). Однако в большинстве случаев требуется именно определение кластеров объектов, а не поиск соответствующих медоидов.

Объём выходных данных:

[math]N[/math] (кластеры объектов кластеризации)

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

PAM работает эффективно для небольших наборов данных, но не очень хорошо масштабируется для больших наборов данных

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература