Уровень алгоритма

Участник:Смирнова Александра/Нахождение собственных чисел квадратной матрицы методом QR разложения (3): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 40: Строка 40:
 
Заметим, что <math>A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k</math>  
 
Заметим, что <math>A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k</math>  
  
Таким образом матрицы <math>A_{k+1}</math> и <math>A_{k}</math> подобны, а значит все матрицы <math>A_{k}</math> подобны матрице <math>A</math> и имеют одинаковый набор собственных значений.
+
Таким образом матрицы <math>A_{k+1}</math> и <math>A_{k}</math> подобны для <math>\forall k</math>, а значит, в силу транзитивности подобия, все матрицы <math>A_{k}</math> подобны матрице <math>A</math> и имеют одинаковый набор собственных значений.
  
 
==== Сходимость алгоритма ====
 
==== Сходимость алгоритма ====

Версия 15:38, 11 октября 2016


Нахождение собственных чисел квадратной матрицы методом QR разложения
Последовательный алгоритм
Последовательная сложность -
Объём входных данных [math] n^2 [/math]
Объём выходных данных [math] n [/math]
Параллельный алгоритм
Высота ярусно-параллельной формы -
Ширина ярусно-параллельной формы -


Основные авторы описания: Смирнова А.С., Киямова А.


Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких чисел [math]\lambda[/math], которые удовлетворяют уравнению:

[math]Ax=\lambda x[/math], при этом, числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - собственными векторами

Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел и собственных векторов матрицы. Был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма.

Суть базового QR-алгоритма заключается в итерационном приведении матрицы [math]A[/math] к некоторой подобной ей матрице [math]A_N[/math] при помощи QR-разложения. Матрица [math]A_N[/math] является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц [math]A[/math] и [math]A_N[/math] их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы [math]A[/math] сводится к задаче выведения матрицы [math]A_N[/math] и поиска собственных значений для нее, что является тривиальной задачей.

Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существуют несколько способов ускорить его:

  • Перед итерациями привести матрицу [math]A[/math] к подобной ей матрице [math]A_H[/math], которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения
  • Использовать QR-алгоритм со сдвигами

В данной статье будет рассмотрен только базовый QR-алгоритм.

1.2 Математическое описание алгоритма

Пусть матрица [math]A[/math] - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом:

  1. [math]A_0=A[/math]
  2. Пусть имеется матрица [math]A_k[/math], тогда матрица [math]A_{k+1}[/math] строится следующим образом:
  • Строится QR-разложение: [math]A_k=Q_kR_k[/math]
  • Вычисляется [math]A_{k+1}=R_kQ_k[/math]

Заметим, что [math]A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k[/math]

Таким образом матрицы [math]A_{k+1}[/math] и [math]A_{k}[/math] подобны для [math]\forall k[/math], а значит, в силу транзитивности подобия, все матрицы [math]A_{k}[/math] подобны матрице [math]A[/math] и имеют одинаковый набор собственных значений.

1.2.1 Сходимость алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: квадратная вещественная плотная матрица [math]A[/math]: [math]A \in \R^{n \times n}[/math]

Объем входных данных: [math]n^2[/math] (необходимо хранить все элементы матрицы)

Выходные данные: собственные значения матрицы [math]A[/math]

Объем выходных данных: [math]n[/math] (квадратная матрица размера [math]n \times n[/math] имеет ровно [math]n[/math] собственных значений при этом некоторые из них могут быть комплексными)

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма