Уровень алгоритма

Алгоритм устойчивой кластеризации с иcпользованием связей: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 22: Строка 22:
 
=== Математическое описание алгоритма ===
 
=== Математическое описание алгоритма ===
  
В ходе кластеризации все имеющиеся транзакции <math>P=\{p_1,...,p_M\}</math> должны быть разделены на <math>k</math> (на практике <math>K \ll M</math>) непересекающихся подмножеств (кластеров) <math>C_1, ..., C_K</math> таким образом, чтобы полученные кластеры максимизировали некоторую критериальную функцию <math>f(C_1, ..., C_K)</math>.
+
В ходе кластеризации все имеющиеся транзакции <math>P=\{p_1,...,p_M\}</math> должны быть разделены на <math>K</math> (на практике <math>K \ll M</math>) непересекающихся подмножеств (кластеров) <math>C_1, ..., C_K</math> таким образом, чтобы полученные кластеры максимизировали некоторую критериальную функцию <math>f(C_1, ..., C_K)</math>.
  
 
Будет называть две транзакции <math>p_1</math> и <math>p_2</math> '''соседями''', если мера сходства этих транзакций больше некоторого заранее заданного порогового значения <math>\theta</math>, то есть
 
Будет называть две транзакции <math>p_1</math> и <math>p_2</math> '''соседями''', если мера сходства этих транзакций больше некоторого заранее заданного порогового значения <math>\theta</math>, то есть
Строка 30: Строка 30:
 
В качестве меры сходства в алгоритме устойчивой кластеризации с использованием связей используется основанная на коэффициенте Жаккара мера сходства
 
В качестве меры сходства в алгоритме устойчивой кластеризации с использованием связей используется основанная на коэффициенте Жаккара мера сходства
  
<math>sim(p_1,p_2)=\frac{N)p_1 \cap p_2)}{N(p_1 \cup p_2)}</math>
+
<math>sim(p_1,p_2)=\frac{N(p_1 \cap p_2)}{N(p_1 \cup p_2)}</math>
  
 
где <math>N(p)</math> - количество товаров, присутствующих в транзакции <math>p</math>.
 
где <math>N(p)</math> - количество товаров, присутствующих в транзакции <math>p</math>.

Версия 23:17, 11 октября 2016


Алгоритм устойчивой кластеризации с иcпользованием связей
Последовательный алгоритм
Последовательная сложность [math]...[/math]
Объём входных данных [math]...[/math]
Объём выходных данных [math]...[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]...[/math]
Ширина ярусно-параллельной формы [math]...[/math]


Автор описания: В.А. Рулев.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Кластеризация (кластерный анализ) — задача разбиения заданной выборки объектов на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались. Каждый объект из выборки характеризуется рядом признаков, которые могут быть вещественными, целочисленными, категорийными (то есть принимающими значения из какого-либо множества) и другими. Множество значений, которые может принимать признак, называется доменом этого признака. Так, например, у объекта кошка может быть категорийный признак порода, доменом которого является множество [персидская, бенгальская, сфинкс, мейн-кун, ...].

Алгоритм устойчивой кластеризации с иcпользованием связей (robust clustering using links, ROCK) был предложен в 2000 году Sudipto Guha (Stanford University), Rajeev Rastogi (Bell Laboratories) и Kyuseok Shim (Bell Laboratories) [1] для кластеризации объектов с категорийными признаками.

Алгоритм устойчивой кластеризации с использованием связей предназначен для работы с объектами типа "транзакция" ("покупательская корзина"). Транзакция представляет собой множество товаров, приобретенных покупателем у поставщика. Каждому товару, который есть в наличии у поставщика, в транзакции соответствует отдельный признак, который принимает значение true, если товар присутствует в транзакции, и false, если товар в транзакции отсутствует.

1.2 Математическое описание алгоритма

В ходе кластеризации все имеющиеся транзакции [math]P=\{p_1,...,p_M\}[/math] должны быть разделены на [math]K[/math] (на практике [math]K \ll M[/math]) непересекающихся подмножеств (кластеров) [math]C_1, ..., C_K[/math] таким образом, чтобы полученные кластеры максимизировали некоторую критериальную функцию [math]f(C_1, ..., C_K)[/math].

Будет называть две транзакции [math]p_1[/math] и [math]p_2[/math] соседями, если мера сходства этих транзакций больше некоторого заранее заданного порогового значения [math]\theta[/math], то есть

[math]sim(p_1,p_2)\lt \theta[/math]

В качестве меры сходства в алгоритме устойчивой кластеризации с использованием связей используется основанная на коэффициенте Жаккара мера сходства

[math]sim(p_1,p_2)=\frac{N(p_1 \cap p_2)}{N(p_1 \cup p_2)}[/math]

где [math]N(p)[/math] - количество товаров, присутствующих в транзакции [math]p[/math].

Количеством связей двух транзакций будем называть количество общих соседей этих транзакций, то есть

[math]links(p_1,p_2)=N(\{p \in P | sim(p_1,p)\lt \theta\} \cap \{p \in P | sim(p_2,p)\lt \theta\})[/math]

1.3 Вычислительное ядро алгоритма

тут что-то будет

1.4 Макроструктура алгоритма

и тут

1.5 Схема реализации последовательного алгоритма

и тут

1.6 Последовательная сложность алгоритма

и тут

1.7 Информационный граф

и тут

1.8 Ресурс параллелизма алгоритма

и тут

1.9 Входные и выходные данные алгоритма

и тут

1.10 Свойства алгоритма

и тут

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

и тут

2.2 Локальность данных и вычислений

и тут

2.3 Возможные способы и особенности параллельной реализации алгоритма

и тут

2.4 Масштабируемость алгоритма и его реализации

и тут

2.5 Динамические характеристики и эффективность реализации алгоритма

и тут

2.6 Выводы для классов архитектур

и тут

2.7 Существующие реализации алгоритма

нету :(

3 Литература

<references \>

  1. Sudipto Guha, Rajeev Rastogi, Kyuseok Shim ROCK: A robust clustering algorithm for categorical attributes. 2000. Information Systems. Vol 25, Issue 5, Pages 345-366