Участник:Руфина Третьякова/Хранение ненулевых элементов разреженных матриц. Умножение разреженной матрицы на вектор: различия между версиями
Trrufina (обсуждение | вклад) |
Trrufina (обсуждение | вклад) |
||
Строка 106: | Строка 106: | ||
Если размерность матрицы <math>n</math>, число ненулевых элементов <math>nnz</math>, для вычисления используется <math>k</math> процессоров тогда: | Если размерность матрицы <math>n</math>, число ненулевых элементов <math>nnz</math>, для вычисления используется <math>k</math> процессоров тогда: | ||
− | *Параллельная сложность алгоритма - <math>O(\frac{nnz}{k})</math> | + | *Каждый процессор оперирует с <math>\frac{n}{k}</math> строками, в каждой из которых примерно <math>\frac{nnz}{n}</math> элементов. Параллельная сложность алгоритма - <math>O(\frac{nnz}{k})</math> |
*Последовательная сложность алгоритма - <math>nnz</math> | *Последовательная сложность алгоритма - <math>nnz</math> |
Версия 20:07, 13 октября 2016
Умножение разреженной матрицы на вектор | |
Последовательный алгоритм | |
Последовательная сложность | [math]nnz[/math] |
Объём входных данных | [math]2(nnz+n)+1[/math] |
Объём выходных данных | [math]n[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math][/math] |
Ширина ярусно-параллельной формы | [math][/math] |
Авторы статьи: Третьякова Р. М. (группа 603), Буторина Е. В. (группа 603)
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Разрежённая матрица — это матрица с преимущественно нулевыми элементами. В противном случае, если бо́льшая часть элементов матрицы ненулевые, матрица считается плотной. Среди специалистов нет единства в определении того, какое именно количество ненулевых элементов делает матрицу разрежённой. Разные авторы предлагают различные варианты. Огромные разрежённые матрицы часто возникают при решении таких задач, как дифференциальное уравнение в частных производных или операции с графами. При хранении и преобразовании разрежённых матриц в компьютере бывает полезно, а часто и необходимо, использовать специальные алгоритмы и структуры данных, которые учитывают разрежённую структуру матрицы. Операции и алгоритмы, применяемые для работы с обычными, плотными матрицами, применительно к большим разрежённым матрицам работают относительно медленно и требуют значительных объёмов памяти. Однако разрежённые матрицы могут быть легко сжаты путём записи только своих ненулевых элементов, что снижает требования к компьютерной памяти. Сложность операции с разреженными матрицами чаще всего определяется не их размером но числом ненулевых элементов. Далее будет показано, что умножение разреженной матрицы на плотный вектор можно произвести ровно за столько умножений сколько в матрице ненулевых элементов.
1.2 Математическое описание алгоритма
Исходные данные: разреженная матрица [math]M^{n*n}[/math], вектор [math]x^{n*1}[/math]
Наиболее удобным форматом для вычисления произведения матрицы на вектор является "Compressed Sparse Row" или сокращенно CSR-формат.
Рассмотрим CSR-представление разреженной матрицы: пусть число ненулевых элементов матрицы равно [math]nnz[/math] CSR-формат представляет матрицу [math]M[/math] в виде 3-х одномерных массивов:
массив [math]A[/math] размера [math]nnz[/math] содержит ненулевые значения матрицы, [math]JA[/math] размера [math]nnz[/math] - номера столбцов ненулевых элементов., [math]IA[/math] размера [math]n[/math]- содержит номер с которого начинается описание элементов строки в массивах [math]A[/math] и [math]JA[/math]. Этот формат позволяет производить перемножение матрицы [math]M[/math] на вектор [math]x[/math] за [math]O(nnz)[/math] умножений и сложений.
Например, это разреженная матрица с 4-мя ненулевыми элементами
- [math]\begin{pmatrix} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 4 & 0 & 0 \\ \end{pmatrix}[/math],
представляемая в формате CSR A = [ 1 2 3 4 ] IA = [ 0 1 2 3 4 ] JA = [ 3 0 2 1 ]
Вычисляемые данные: вектор [math]M*x=y[/math]
1.3 Вычислительное ядро алгоритма
- [math]y_i = \sum_{k = IA_i}^{IA_{i+1}} A_k x_{JA_k}[/math]
1.4 Макроструктура алгоритма
Псевдокод алгоритма:
Входные данные: число строк матрицы n; разреженная матрица в формате CSR: строчные указатели IA, столбцовые указателиJA, ненулевые элементы A; вектор x. Выходные данные: произведение матрицы на вектор y. read CSR n, IA, JA, A; read x for i = 1,n: for k = IA(i), IA(i+1)-1: y(i) += A(k)*x(JA(k)); write y;
1.5 Схема реализации последовательного алгоритма
Метод можно описать следующим образом:
- привести матрицу [math]M[/math] к формату CSR
- для [math]i[/math] от [math]0[/math] до [math]n-1[/math] вычислить [math]y_i[/math] по формуле [math]y_i = \sum_{k = IA_i}^{IA_{i+1}} A_k x_{JA_k}[/math]
1.6 Последовательная сложность алгоритма
Для вычисления матрично-векторного произведения матрицы размера [math]n*n[/math] и вектора размера n в последовательном варианте требуется:
- [math]nnz[/math] сложений,
- [math]nnz[/math] умножений.
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
Для параллельного умножения матрицы на вектор порядка [math]n[/math] требуется последовательно выполнить следующие ярусы:
1.9 Входные и выходные данные алгоритма
Входными данными алгоритма являются:
- размер разреженной матрицы [math] n [/math];
- вектор [math] AI [/math] размерности [math] n+1 [/math];
- вектор [math] AJ [/math] размерности [math] nnz [/math];
- вектор [math] A [/math] размерности [math] nnz [/math];
- вектор [math] x [/math] размерности [math] n [/math].
Суммарная размерность входных данных: [math] 2(nnz + n) + 1 [/math]
Выходными данными является
- вектор [math] y [/math] размерности [math] n [/math].
Объем выходных данных: [math] n [/math].
1.10 Свойства алгоритма
Если размерность матрицы [math]n[/math], число ненулевых элементов [math]nnz[/math], для вычисления используется [math]k[/math] процессоров тогда:
- Каждый процессор оперирует с [math]\frac{n}{k}[/math] строками, в каждой из которых примерно [math]\frac{nnz}{n}[/math] элементов. Параллельная сложность алгоритма - [math]O(\frac{nnz}{k})[/math]
- Последовательная сложность алгоритма - [math]nnz[/math]
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
Последовательная реализация имеется в пакете SPARSKIT [1], Python.Scipy [2]
Параллельный алгоритм реализован в библиотеке Matlab [3], Intel MKL [4]
3 Литература
[1] С. Писсанецки. Технология разреженных матриц. Изд. Мир, 1988.
[2] В. В. Воеводин, Вл.В. Воеводин. Параллельные вычисления. – СПб.: БХВ - Петербург, 2002.