Уровень алгоритма

Участница:Александра/Метод встречи посередине: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 34: Строка 34:
 
............................
 
............................
 
<math>z_{|K_1|}=T_1(x,k_1^{|K_1|})</math>
 
<math>z_{|K_1|}=T_1(x,k_1^{|K_1|})</math>
Сложность вычисления составит |K_1| операций опробования.
+
Сложность вычисления составит <math>|K_1|</math>|K_1| операций опробования.
  
 
== Литература ==
 
== Литература ==
  
 
<references \>
 
<references \>

Версия 10:36, 14 октября 2016


Метод встречи посередине
Последовательный алгоритм
Последовательная сложность [math]O(\sqrt(n)\ln(n))[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O()[/math]
Ширина ярусно-параллельной формы [math]O()[/math]


Автор описания: А.В.Батарина

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод "Встреча посередине" криптоанализа блочных шифров был впервые предложен в 1977 году Уитфилдом Диффи и Мартином Хеллманом [1]. Встреча посередине используется для ускорения перебора ключей шифра за счёт увеличения требуемой памяти. Метод применим в случае каскадного построения сложного шифра из нескольких простых, другими словами, в случае последовательного применения шифрующих преобразований на разных ключах к блокам открытого текста.

1.1.1 Блочный шифр с ключевым расписанием

1.1.2 Усложнённые шифры

В качестве примера шифра, поддающегося атаке "встреча посередине" можно привести криптоалгоритм 2DES, являющийся модификацией шифра DES. В 2DES открытый текст шифруется дважды алгоритмом DES на двух разных 56-битных ключах. Однако из-за атаки "встреча посередине" сложность перебора двойного ключа (112 бит) шифра 2DES составляет [math]2^{57}[/math] вместо ожидаемых [math]2^{112}[/math].

1.2 Математическое описание алгоритма

Исходные данные: открытый текст [math]x[/math], шифртекст [math]y[/math].

Алгоритм зашифрования -- композиция двух преобразований [math]T_1(x,k_1)[/math] и [math]T_2(x,k_2)[/math], т.е. [math]y=T_2(T_1(x,k_1),k_2)[/math].

Алгоритм расшифрования -- [math]x=T_1^{-1}(T_2^{-1}(x,k_2),k_1)[/math]

Вычисляемые данные: ключи шифрования [math]k_1 \in K_1[/math], [math]k_2 \in K_2[/math], где [math]K_1, K_2[/math] -- множества возможных ключей.

Трудоёмкость полного перебора всех возможных пар [math]k_1,k_2[/math] составляет в среднем [math]\frac{|K_1||K_2|}{2}[/math]. Однако используя дополнительную память, можно сократить перебор.

Предположим, что открытый текст [math]x[/math] и шифртекст [math]y[/math] однозначно определяют ключи [math]k_1,k_2[/math]. Составим следующую таблицу: [math]z_1=T_1(x,k_1^1)[/math] [math]z_2=T_2(x,k_1^2)[/math] ............................ [math]z_{|K_1|}=T_1(x,k_1^{|K_1|})[/math] Сложность вычисления составит [math]|K_1|[/math]|K_1| операций опробования.

2 Литература

<references \>

  1. (June 1977) «Exhaustive Cryptanalysis of the NBS Data Encryption Standard». Computer 10 (6): 74–84. DOI:10.1109/C-M.1977.217750