Участник:Kozlov Vladimir/Алгоритм Ланцоша для арифметики с плавающей точкой с полной переортогонализацией: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 3: Строка 3:
 
'''Алгоритм Ланцоша''' — это итерационный алгоритм поиска <math>k</math> приближённых собственных значений симметричной вещественной матрицы <math>A</math> размера <math>n \times n</math>. Алгоритм применяется, когда матрица <math>A</math> слишком велика, чтобы к ней можно было применять точные прямые методы вычисления собственных значений. Алгоритм '''метод Рэлея-Ритца''' поиска приближённых собственных значений и '''метод Ланцоша''' построения крыловского подпространства.
 
'''Алгоритм Ланцоша''' — это итерационный алгоритм поиска <math>k</math> приближённых собственных значений симметричной вещественной матрицы <math>A</math> размера <math>n \times n</math>. Алгоритм применяется, когда матрица <math>A</math> слишком велика, чтобы к ней можно было применять точные прямые методы вычисления собственных значений. Алгоритм '''метод Рэлея-Ритца''' поиска приближённых собственных значений и '''метод Ланцоша''' построения крыловского подпространства.
  
Метод Рэлея-Ритца является методом поиска <math>k</math> приближённых собственных значений симметричной вещественной матрицы <math>A</math> размера <math>n \times n</math>. Если <math>Q = [Q_k, Q_u]</math> — ортонормированная матрица размера <math>n \times n</math>, <math>Q_k</math> имеет размер <math>n \times k</math>, то  
+
Метод Рэлея-Ритца является методом поиска <math>k</math> приближённых собственных значений симметричной вещественной матрицы <math>A</math> размера <math>n \times n</math>. Если <math>Q = [Q_k, Q_u]</math> — ортонормированная матрица размера <math>n \times n</math>, <math>Q_k</math> имеет размер <math>n \times k</math>, <math>Q_u</math> имеет размер <math>n \times n - k</math>, то  
 
<math>T = Q^T A Q = </math>
 
<math>T = Q^T A Q = </math>
  

Версия 14:25, 15 октября 2016

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша — это итерационный алгоритм поиска [math]k[/math] приближённых собственных значений симметричной вещественной матрицы [math]A[/math] размера [math]n \times n[/math]. Алгоритм применяется, когда матрица [math]A[/math] слишком велика, чтобы к ней можно было применять точные прямые методы вычисления собственных значений. Алгоритм метод Рэлея-Ритца поиска приближённых собственных значений и метод Ланцоша построения крыловского подпространства.

Метод Рэлея-Ритца является методом поиска [math]k[/math] приближённых собственных значений симметричной вещественной матрицы [math]A[/math] размера [math]n \times n[/math]. Если [math]Q = [Q_k, Q_u][/math] — ортонормированная матрица размера [math]n \times n[/math], [math]Q_k[/math] имеет размер [math]n \times k[/math], [math]Q_u[/math] имеет размер [math]n \times n - k[/math], то [math]T = Q^T A Q = [/math]

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма

3 Литература