Участник:Kozlov Vladimir/Алгоритм Ланцоша для арифметики с плавающей точкой с полной переортогонализацией: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 5: Строка 5:
 
Метод Рэлея-Ритца является методом поиска <math>k</math> приближённых собственных значений симметричной вещественной матрицы <math>A</math> размера <math>n \times n</math>. Если <math>Q = [Q_k, Q_u]</math> — ортонормированная матрица размера <math>n \times n</math>, <math>Q_k</math> имеет размер <math>n \times k</math>, <math>Q_u</math> имеет размер <math>n \times n - k</math>, то можно записать равенство
 
Метод Рэлея-Ритца является методом поиска <math>k</math> приближённых собственных значений симметричной вещественной матрицы <math>A</math> размера <math>n \times n</math>. Если <math>Q = [Q_k, Q_u]</math> — ортонормированная матрица размера <math>n \times n</math>, <math>Q_k</math> имеет размер <math>n \times k</math>, <math>Q_u</math> имеет размер <math>n \times n - k</math>, то можно записать равенство
  
<math>T = Q^T A Q = \left[ \begin{array}{cc}
+
<math>T = Q^T A Q = [Q_k, Q_u]^T A [Q_k, Q_u] =
 +
\left[ \begin{array}{cc}
 +
Q_k^T A Q_k & Q_k^T A Q_u\\
 +
Q_u^T A Q_k & Q_u^T A Q_u
 +
\end{array} \right]
 +
= \left[ \begin{array}{cc}
 
T_{k} & T_{ku}^T\\
 
T_{k} & T_{ku}^T\\
 
T_{ku} & T_{u}
 
T_{ku} & T_{u}

Версия 16:10, 15 октября 2016

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша — это итерационный алгоритм поиска [math]k[/math] приближённых собственных значений симметричной вещественной матрицы [math]A[/math] размера [math]n \times n[/math]. Алгоритм применяется, когда матрица [math]A[/math] слишком велика, чтобы к ней можно было применять точные прямые методы вычисления собственных значений. Алгоритм метод Рэлея-Ритца поиска приближённых собственных значений и метод Ланцоша построения крыловского подпространства.

Метод Рэлея-Ритца является методом поиска [math]k[/math] приближённых собственных значений симметричной вещественной матрицы [math]A[/math] размера [math]n \times n[/math]. Если [math]Q = [Q_k, Q_u][/math] — ортонормированная матрица размера [math]n \times n[/math], [math]Q_k[/math] имеет размер [math]n \times k[/math], [math]Q_u[/math] имеет размер [math]n \times n - k[/math], то можно записать равенство

[math]T = Q^T A Q = [Q_k, Q_u]^T A [Q_k, Q_u] = \left[ \begin{array}{cc} Q_k^T A Q_k & Q_k^T A Q_u\\ Q_u^T A Q_k & Q_u^T A Q_u \end{array} \right] = \left[ \begin{array}{cc} T_{k} & T_{ku}^T\\ T_{ku} & T_{u} \end{array} \right].[/math]

Метод Рэлея-Ритца заключается в том, что собственные значения матрицы [math]T_k[/math] объявляются приближёнными собственными значениями матрицы [math]A[/math]. Можно показать, что

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма

3 Литература