Участник:LKruglov/Алгоритм устойчивой кластеризации с использованием связей: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 25: Строка 25:
  
 
Аналогично целевой функции (1) значение связи между двумя кластерами делится на ожидаемое число связей между кластерами.
 
Аналогично целевой функции (1) значение связи между двумя кластерами делится на ожидаемое число связей между кластерами.
 +
 +
=== Вычислительное ядро алгоритма ===

Версия 16:26, 15 октября 2016

1 Общее описание алгоритма

1.1 Свойства и структура алгоритма

В связи с наличием огромного количества накопленной информации задача добычи данных становится все более важной. Кластеризация позволяет распределять данные по группам (кластрерам) так, что в каждой группе данные обладают схожими характеристиками, а в разных группах характеристики различаются.

Алгоритм устойчивой кластеризации с использованием связей (robust clustering using links, ROCK)построен на основе понятия связей между кластеризуемыми точками и их соседства. Две точки считаются соседями, если являются достаточно близким (схожими): [math]sim({p_i}, {p_j}) \gt = \theta[/math], где [math]\theta[/math] - заданное пороговое значение в интервале от 0 до 1. Связь [math]link({p_i}, {p_j})[/math] между двумя точками определяется как число общих соседей между точками [math]{p_i}[/math] и [math]{p_j}[/math]. Таким образом, чем большее значение функции связи для двух точек, тем более вероятно они принадлежат одному кластеру.

В отличие от алгоритмов кластеризации, учитывающих локальные характеристики точек, данный алгоритм учитывает глобальную информацию о соседях точек при принятии решения о помещение точек в кластеры, что делает его очень устойчивым.

Рассматриваемый алгоритм принадлежит к классу иерархических алгоритмов кластеризации. На каждой итерации алгоритма выбираются и объединяются два кластера, и по достижении требуемого числа кластеров алгоритм завершается.

1.2 Математическое описание алгоритма

Итак, задача кластеризации сводиться к такому разбиению точек на кластеры, которое максимизирует сумму связей точек принадлежащих одному кластеру, и минимизирует эту функцию для точек из разных кластеров. Отсюда следует следующая целевая функция для разбияния на [math]k[/math] кластеров:

[math]TODO[/math] (1)

Данная функция отличается от простой суммы связей для каждого кластера, так как такая функция не обеспечивает распределение точек, имеющих мало связей между собой, по разным кластерам. Поэтому действительную сумму связей в кластере следует разделить на ожидаемую сумму связей. Функция [math]f(\theta)[/math] задается пользователем и должна обладать следующим свойством: каждая точка, принадлежащая кластеру Ci, имеет приблизительно [math]TODO[/math] соседей в этом кластере.

Связь между двумя кластерами определяется как

[math]link({C_i}, {C_j}) = \sum^{}_{{p_q}\in{C_i}, {p_r}\in{C_j}}{link[{C_i}, {C_j}]}[/math]

Тогда для выбора кластеров для объединения используется следующая целевая функция качества:

[math]TODO[/math]

Аналогично целевой функции (1) значение связи между двумя кластерами делится на ожидаемое число связей между кластерами.

1.3 Вычислительное ядро алгоритма