Участник:ЕкатеринаКозырева/Алгоритм динамической иерархической кластеризации CHAMELEON: различия между версиями
Строка 92: | Строка 92: | ||
== Макроструктура алгоритма == | == Макроструктура алгоритма == | ||
+ | |||
+ | Как уже рассказывалось ранее, алгоритм включает в себя три основных этапа, каждый из которых, по сути, является отдельным алгоритмом. Этапы выполняются последовательно относительно друг друга. | ||
+ | |||
+ | Макрооперация на первом этапе - процедура нахождения <math>k</math> ближайших соседей, на втором - процедура разбиения наибольшего подграфа на два графа, на третьем - процедура вычисления показателей сходства, на основе которых принимается решение о слиянии подграфов в кластер. | ||
+ | |||
== Схема реализации последовательного алгоритма == | == Схема реализации последовательного алгоритма == | ||
== Последовательная сложность алгоритма == | == Последовательная сложность алгоритма == |
Версия 18:05, 15 октября 2016
Алгоритм динамической иерархической кластеризации CHAMELEON | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(nm + n log n + m^2 log m)[/math] |
Объём входных данных | [math]\frac{n (n - 1)}{2}[/math] |
Объём выходных данных | [math]n[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math][/math] |
Ширина ярусно-параллельной формы | [math][/math] |
Автор описания Е.А.Козырева
Содержание
- 1 часть. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 часть. Программная реализация алгоритма
- 3 Литература
1 часть. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм CHAMELEON был предложен в 1999 году тремя учеными из университета Миннесоты – George Karypis, Eui-Hong (Sam) Han и Vipin Kumar[1].
Предназначен для решения задач кластеризации. Кластеризация (или кластерный анализ) — это задача разбиения множества объектов на группы, называемые кластерами. Внутри каждой группы должны оказаться «похожие» объекты, а объекты разных группы должны быть как можно более отличны.
CHAMELEON - это агломеративный иерархический алгоритм кластеризации, ключевой особенностью которого является то, что он учитывает и взаимную связность, и сходство при определении наиболее похожей пары подкластеров, основываясь на динамической модели. Это означает, что в процессе кластеризации два кластера объединяются, только если их относительная взаимная связность и относительное взаимное сходство являются высокими по отношению к внутренней взаимосвязанности кластеров и близости элементов внутри кластеров. Кроме того, Хамелеон использует подход для моделирования степени взаимосвязанности и близости между каждой парой кластеров, который учитывает внутренние характеристики самих кластеров. Таким образом, он может автоматически адаптироваться к внутренним характеристикам объединяемых кластеров.
CHAMELEON находит кластеры в наборе данных с помощью трехфазного алгоритма. На первой фазе происходит построение графа, путём добавления рёбер по принципу k ближайших соседей. На второй фазе CHAMELEON группирует полученные элементы в множество относительно небольших подкластеров. Во время третьей фазы применяется агломеративный иерархический алгоритм кластеризации, с помощью которого находятся естесственные кластеры путем многократного объединения подкластеров, полученных на прошлом этапе.
1.2 Математическое описание алгоритма
Исходные данные:
- Множество из n точек [math]V= {v_{ij}}[/math] в метрическом пространстве, которое задано симметрической матрицей расстояний [math]A[/math] размера [math]n\times n[/math].
- [math]k[/math] - количество ближайших соседей для вершин, [math]k \in N, k \leq n[/math].
- [math]l[/math] - наименьшее число вершин, которое может содержать наибольший подграф на 2-м этапе, [math]l \in N, l \leq n[/math].
Обозначения:
- [math]G = (V, E)[/math] - граф, полученный путём соединения каждой точки с её [math]k[/math] ближайшими соседями.
- [math]K= \{K_{i}\}[/math] - разбиение множества V на набор попарно непересекающихся связных подмножеств, полученное в результате выполнения второй фазы алгоритма.
- [math]G_{2} = (K, E_{2})[/math] - взвешенный граф, вершинами которого являются получившиеся подграфы, а ребрами - количество ребер исходного графа, соединяющих соответствующие подграфы.
- [math]C = \{C_{i}\}[/math] - итоговое разбиение множества вершин графа [math]G_{2}[/math] на набор кластеров.
Вспомогательные понятия
- [math]EC_{(C_{i},C_{j})}[/math] - абсолютная взаимная связность пары кластеров [math]C_{i}, C{j}[/math]. Определяется как сумма весов ребер, соединяющих вершины, принадлежащие [math]C{i}[/math] c вершинами из [math]C{j}[/math]. Внутренняя связность [math]EC_{(C_{i},C_{i})}[/math] вычисляется как сумма ребер, входящих в разделитель, разбивающий [math]C{i}[/math] на два равных подграфа.
- [math]RI_{(C_{i},C_{j})} = \frac{|EC_{(C_{i},C_{j})}|}{(|EC_{C_{i}}|+|EC_{C_{j}}|)/2}[/math] - относительная взаимная связность пары кластеров [math]C_{i}, C{j}[/math]
- [math]S_{EC_{(C_{i},C_{j})}}[/math] - абсолютное взаимное сходство пары кластеров [math]C_{i}, C{j}[/math]. Подсчитывается как среднее сходство между соединенными вершинами, принадлежащими [math]C{i}[/math] и [math]C{j}[/math] соответственно. Соединения обусловлены разбиением общего графа, полученного на первом этапе алгоритма.
- [math] RC_{(C_{i},C_{j})}= \frac{S_{EC_{(C_{i},C_{j})}}}{\frac{|C_{i}|}{|C_{i}+C_{j}|}*S_{EC_{(C_{i})}}+\frac{|C_{i}|}{|C_{i}+C_{j}|}*S_{EC_{(C_{j})}}}[/math] - относительное взаимное сходство пары кластеров [math]C_{i}, C{j}[/math]. Определяется как абсолютное сходство между этой парой кластеров, нормализованное с учетом их внутреннего сходства.
Первый этап
На первом этапе, согласно графо-ориентированному подходу, происходит построение графа [math]G = (V, E)[/math] на матрице сходства объектов по принципу k ближайших соседей. Две вершины такого графа соединяет ребро, если объект, соответствующий любой из этих вершин попадает в число k наиболее близких объектов для объекта, соответствующего другой вершине из данной пары.
Второй этап
Алгоритм разделяет полученный граф на множество сравнительно малых подграфов [math]K= \{K_{i}\}[/math]. Разделение происходит последовательно. На каждом шаге выбирается подграф, содержащий наибольшее число вершин. Этот граф разделяется на два подграфа так, что разделитель ребер графа минимален и каждый из получаемых подграфов содержит не менее 25 % вершин исходного графа. Процесс разделения останавливается, когда наибольший подграф содержит меньше некоторого заданного числа вершин. Обычно величина этого параметра задается равной значению от 1 до 5 % от числа объектов. Полученное множество связных графов считается множеством начальных кластеров, на котором требуется провести последовательное иерархическое объединение.
Третий этап
Третий этап заключается в итеративном преобразовании множества подграфов [math]K= \{K_{i}\}[/math] в множество кластеров [math]C = \{C_{i}\}[/math]. Алгоритм осуществляет агломеративную иерархическую кластеризацию на основании показателей [math]EC_{(C_{i},C_{j})}[/math], [math]S_{EC_{(C_{i},C_{j})}}[/math], [math]RI_{(C_{i},C_{j})} [/math], [math] RC_{(C_{i},C_{j})}[/math]. Существует две стратегии анализа показателей сходства. Первая подразумевает наличие некоторых пороговых значений [math]T_{RI}[/math] и [math]T_{RC}[/math]. В соответствии с этой стратегией, алгоритм для каждого кластера [math]C_{i}[/math] проверяет, отвечают ли смежные (наиболее близкие) ему кластеры условиям:
- [math]RI_{(C_{i},C_{j})} \geqslant T_{RI}[/math]
- [math]RC_{(C_{i},C_{j})} \geqslant T_{RC}[/math]
Если более одного смежного кластера отвечает этим условиям, то алгоритм выбирает для объединения наиболее связный кластер (граф), то есть такой кластер [math]C_{j}[/math], с которым у кластера [math]C_{i}[/math] получается наибольшая абсолютная взаимная связность. По завершению прохода по всем кластерам, созданные таким образом пары объединяются. Параметры [math]T_{RI}[/math] и [math]T_{RC}[/math] могут использоваться для изменения характеристик получаемых кластеров.
Вторая стратегия заключается в использовании специальной функции, объединяющей понятия относительной взаимной связности и относительного взаимного сходства. На каждом шаге выбираются те кластеры для объединения, которые максимизируют эту функцию:
[math]RI_{(C_{i},C_{j})}*RC_{(C_{i},C_{j})}^\alpha[/math],
где [math]\alpha[/math] выбирается пользователем. Если [math]\alpha \gt 1 [/math], то алгоритм придает большее значение относительному взаимному сходству, а если [math]\alpha \lt 1 [/math], то большее значение имеет относительная взаимная связность.
Вычисляемые данные:
[math]U = (u_1, u_2, ..., u_n)[/math] - n-мерный вектор, где [math]u_i \in N_{[C]}[/math] - порядковый номер кластера, к которому принадлежит вершина i исходного множества V.
1.3 Вычислительное ядро алгоритма
Алгоритм имеет три вычислительных ядра, по одному на каждый этап.
На первом этапе вычислительным ядром является процесс нахождения [math]k[/math] ближайших соседей для каждой вершины, который заключается в анализе матрицы расстояний.
На втором этапе вычислительным ядром является процесс поиска подходящего разбиения очередного подграфа на два графа с минимизацией разделителя ребер графа.
На третьем этапе вычислительным ядром является расчет величин [math]EC_{(C_{i},C_{j})}[/math], [math]S_{EC_{(C_{i},C_{j})}}[/math], [math]RI_{(C_{i},C_{j})} [/math], [math] RC_{(C_{i},C_{j})}[/math] для каждой пары смежных кластеров.
1.4 Макроструктура алгоритма
Как уже рассказывалось ранее, алгоритм включает в себя три основных этапа, каждый из которых, по сути, является отдельным алгоритмом. Этапы выполняются последовательно относительно друг друга.
Макрооперация на первом этапе - процедура нахождения [math]k[/math] ближайших соседей, на втором - процедура разбиения наибольшего подграфа на два графа, на третьем - процедура вычисления показателей сходства, на основе которых принимается решение о слиянии подграфов в кластер.
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные
1. Симметрическая матрица [math]A[/math] расстояний между элементами данных размера [math]n\times n[/math] с нулями на главной диагонали ([math]a_{ii}= 0, i = 1, \ldots, N[/math]).
2. [math]k[/math] - количество ближайших соседей для вершин (рекомендуемое значение [math]k[/math] от 5 до 20 в зависимости от количества анализируемых объектов).
3. [math]l[/math] - наименьшее число вершин, которое может содержать наибольший подкластер на 2-м этапе . Величина этого параметра варьируется от 1 до 5 % от общего числа объектов.
Объём входных данных
[math]\frac{n (n - 1)}{2}[/math] (в силу симметричности и нулевой главной диагонали достаточно хранить только над/поддиагональные элементы).
Выходные данные
Вектор из [math]n[/math] чисел [math]u_{1}, u_{2}, \ldots, u_{N}[/math], где [math]u_{i}[/math] - целое число, соответствующее кластеру [math]i[/math]-го объекта.
Объём выходных данных
[math]n[/math]
1.10 Свойства алгоритма
2 часть. Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
3 Литература
[1] George Karypis, Eui-Hong (Sam) Han и Vipin Kumar, «Chameleon: Hierarchical Clustering Using Dynamic Modeling», 1999.
[2] http://studopedia.ru/7_41934_algoritm-dinamicheskoy-ierarhicheskoy-klasterizatsii-CHAMELEON.html