Участник:Анюшева Ирина/Итерационный метод решения системы линейных алгебраических уравнений GMRES (обобщенный метод минимальных невязок): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 20: Строка 20:
  
 
====Ортогонализация Арнольди====
 
====Ортогонализация Арнольди====
Для построения базиса в подпространстве Крылова в методе GMRES применяется ортогонализация Арнольди.
+
Для построения базиса <math>V</math> в подпространстве Крылова в методе GMRES применяется ортогонализация Арнольди.
  
 
Формулы метода:
 
Формулы метода:

Версия 20:17, 15 октября 2016

Основные авторы описания: Анюшева Ирина (614 группа), Исхаков Эльдар (614 группа)

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Обобщенный метод минимальных невязок (GMRES) для решения системы линейных алгебраических уравнений аппроксимирует решение с помощью вектора в подпространства Крылова с минимальным остатком. Метод GMRES разработан Ю.Саадом и Мартин Х. Шульцом в 1986 году. Метод по праву считается одним из самых эффективных численных методов решения несимметричных систем. Он гарантирует неувеличение нормы невязки в ходе итерационного процесса, который строится основан на построении базиса в соответствующей системе подпространстве Крылова [math]K_j(A, r_0)[/math]. Затем решение уточняется некоторой добавкой, представленной в виде разложения по этому базису.

Метод обобщенных минимальных невязок популярен из-за наличия ряда преимуществ: он ошибкоустойчив, допускает эффективное распараллеливание, не требует нахождения параметра релаксации, обладает суперлинейной скоростью сходимости. Однако в чистом виде для больших систем метод не используется из-за чрезвычайно больших затрат памяти. Зато широкое распространение получила перезапускаемая версия метода, подоразумевающая перезапуск метода каждые m итераций. Уменьшение размерности пространства может привести к стагнации метода – процессу, при котором с каждой следующей итерацией норма невязки уменьшается незначительно, либо не уменьшается вовсе.

1.2 Математическое описание алгоритма

Исходные данные: система линейных алгебраических уравнений [math]Ax=b[/math], где:

[math]A=(a_{ij})[/math] [math]-[/math] вещественная матрица размера [math]n \times n[/math];

[math]b[/math] и [math]x[/math] вектора из [math]n[/math] элементов;

[math]x^*[/math] [math]-[/math] точное решение системы.

Вычисляемые данные: [math]x^{(s)} - [/math]приближенное решение системы.

1.2.1 Ортогонализация Арнольди

Для построения базиса [math]V[/math] в подпространстве Крылова в методе GMRES применяется ортогонализация Арнольди.

Формулы метода:

[math] \begin{align} (h_{i+1,i}v_{i+1}) & = Av_i - \sum_{j = 1}^{i} h_{j,i}v_j, \\ v_1 &= \frac{r_0}{\parallel r_0 \parallel}, \end{align} [/math]

В матрично-векторных обозначениях соотношение может быть записано как

[math] \begin{align} AV_i &= V_i H_i + h_{i+1,i}v_{i+1} e_i^T &=V_{i+1}\overline{H_i}, \end{align} [/math]
[math] \begin{align} V_i &= [v_1|v_2|...|v_i], \overline{H_i} - \end{align} [/math] верхняя матрица Хессенберга размерности [math](i+1)\times i[/math]

1.3 Схема реализации последовательного алгоритма

1. Выбрать произвольное [math]x_0[/math]; вычислить [math]r_0=b-Ax_0[/math] и [math]v_1=\frac{r_0}{\parallel r_0 \parallel}[/math]

2. Задать матрицу [math]\overline{H}_m[/math] размерности [math](m+1)\times m[/math] и всем ее элементам присвоить нулевые значения

3. Для [math]j=1,\dots,m[/math] выполнять: