Участница:Эльвира Ахиярова/Итерационный метод решения системы линейных алгебраических уравнений GMRES (обобщенный метод минимальных невязок): различия между версиями
Строка 19: | Строка 19: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
− | где < | + | где <math>r_0 = Ax_0-b</math> |
+ | |||
Исходные данные: Матрица <math>A</math> (элементы <math>a_{ij}</math>), начальное приближение <math> x_0 </math> | Исходные данные: Матрица <math>A</math> (элементы <math>a_{ij}</math>), начальное приближение <math> x_0 </math> | ||
Версия 21:35, 15 октября 2016
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Обобщенный метод минимальных невязок (GMRES) является итерационным методом нахождения решения для системы линейных алгебраических уравнений с произвольной невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова. GMRES был предложен Йозефом Саадом и Мартином Шульцем в 1986 году.[1] Наиболее популярные реализации метода основаны на модифицированном алгоритме ортогонализации Грама-Шмидта и на использовании рестартов для управления требуемым объемом памяти.
1.2 Математическое описание алгоритма
Приближенное решение [math]x_k[/math] для системы линейных алгебраических уравнений
- [math] \begin{align} Ax = f \end{align} [/math]
с произвольной невырожденной матрицей [math]A[/math] ищется в виде:
- [math] \begin{align} x_k & = x_0+z_k \\ z_k & \in K_k = \lt r_0, Ar_0, \dots A^{k-1}r_0\gt ,\\ \end{align} [/math]
где [math]r_0 = Ax_0-b[/math]
Исходные данные: Матрица [math]A[/math] (элементы [math]a_{ij}[/math]), начальное приближение [math] x_0 [/math]
Вычисляемые данные: Приближенное решение уравнения [math]x_k[/math].
Формулы метода:
- [math] \begin{align} l_{11} & = \sqrt{a_{11}}, \\ l_{j1} & = \frac{a_{j1}}{l_{11}}, \quad j \in [2, n], \\ l_{ii} & = \sqrt{a_{ii} - \sum_{p = 1}^{i - 1} l_{ip}^2}, \quad i \in [2, n], \\ l_{ji} & = \left (a_{ji} - \sum_{p = 1}^{i - 1} l_{ip} l_{jp} \right ) / l_{ii}, \quad i \in [2, n - 1], j \in [i + 1, n]. \end{align} [/math]
Существует также блочная версия метода, однако в данном описании разобран только точечный метод.
В ряде реализаций деление на диагональный элемент выполняется в два этапа: вычисление [math]1/l_{ii}[/math] и затем умножение на него всех (видоизменённых) [math]a_{ji}[/math] . Здесь мы этот вариант алгоритма не рассматриваем. Заметим только, что он имеет худшие параллельные характеристики, чем представленный.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
In mathematics, the generalized minimal residual method (usually abbreviated GMRES) is an iterative method for the numerical solution of a nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.
The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986.[1] GMRES is a generalization of the MINRES method developed by Chris Paige and Michael Saunders in 1975. GMRES also is a special case of the DIIS method developed by Peter Pulay in 1980. DIIS is also applicable to non-linear systems.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- ↑ Y.Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and Stat. Comp. 7: 856-869 (1986).