Уровень алгоритма

Участник:ADovganich/Нечеткий алгоритм С средних: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 146: Строка 146:
 
== Информационный граф ==
 
== Информационный граф ==
  
[[Файл:Снимок экрана 2016-10-15 в 23.10.05.png|582 px|thumb|left|Информационный граф]]
+
[[Файл:Снимок экрана 2016-10-15 в 23.10.05.png|582 px|thumb|Информационный граф]]
  
 
== Ресурс параллелизма алгоритма ==
 
== Ресурс параллелизма алгоритма ==

Версия 23:17, 15 октября 2016


Нечеткий алгоритм C средних


Авторы : Мария Проценко (1.5-1.8, 1.10, 2.7), Андрей Довганич (1.1-1.4, 1.9)

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Нечеткий алгоритм C-средних (fuzzy C-means) позволяет разбить имеющееся множество векторов (точек) мощностью p на заданное число нечетких множеств. Предназначен для кластеризации больших наборов данных. Основным достоинством алгоритма является нечеткость при определении объекта в кластер. Благодаря этому становится возможным определить объекты, которые находятся на границе, в кластеры. Из основного достоинства следует и главный недостаток - неопределенность с объектами, удаленными от центров всех кластеров. В остальном ему присущи стандартные проблемы подобного класса алгоритмов: вычислительная сложность, необходимость задания количества кластеров[1].

Алгоритм был разработан J.C. Dunn в 1973 г.[2], усовершенствован J.C. Bezdek в 1981 г.[3].

На вход алгоритм получает некоторое множество входных векторов и случайную матрицу их принадлежности к каждому из кластеров. На выходе с заданной точностью получаем матрицу принадлежности.

В общем виде алгоритм можно записать следующим образом:

1) Инициализировать матрицу принадлежности;

2) Вычислить центры кластеров;

3) Вычислить значение решающей функции. Если значение ниже некоторого порогового или его улучшение по сравнению с предыдущей итерацией меньше определенной величины, то остановить вычисления;

4) Иначе вычислить новые значения матрицы принадлежности;

5) Перейти к шагу 2

1.2 Математическое описание алгоритма

Рассмотрим матрицу M = m_{ik} \in[0,1],\; i = 1, ..., c, \; k = 1, ..., K . m_{i,k} - вероятность принадлежности объекта k к кластеру i; c - количество кластеров, K - количество векторов. При этом элементы матрицы удовлетворяют следующим условиям:

- сумма элементов в каждом столбце равна 1;

- сумма всех элементов матрицы равно K;

Назовем M матрицей принадлежности.

Пусть c_{i} (i = 1,2,...c) - центры кластеров. Тогда рассмотрим функцию

\begin{align} J(M, c_{1}, c_{2},...c_{c}) = \sum_{i = 1}^{c}{J_{i}} = \sum_{i = 1}^{c}\sum_{k = 1}^{K}{m_{ik}^q}d_{ik}^2 ~(1) \end{align}

где d_{ik} = \left\Vert{u_{k}-c_{i}}\right\| - Евклидово расстояние между центром кластера и объектом, 1 \le q \le \infty - экспоненциальный весовой коэффициент, характеризующий нечеткость. Будем минимизировать значение функции J . Для этого вычислим центры кластеров по формуле ~(2) .

c_{i} = {{\sum_{k = 1}^{K}{m_{ik}^q} * u_{k}} \over {\sum_{k = 1}^{K}{m_{ik}^q}}}~(2)

где m_{ik} — коэффициент принадлежности u_{k} вектора к кластеру c_{i}

и новые значения матрицы M по формуле ~(3)

m_{ik} = {1 \over \sum_{j = 1}^{c}{({{d_{ik}} \over {d_{jk}}})}^{2 \over q-1}} ~(3)

~(2) и ~(3) являются необходимым условиями достижения минимума функцией J . Таким образом эти два условия дают нам итерационный процесс.

Полностью алгоритм можно записать следующим образом:

1) Инициализировать матрицу принадлежности M случайными значениями от 0 до 1;

2) Вычислить центры кластеров c_{i} (i = 1,2,...c) используя формулу ~(2);

3) Вычислить значение решающей функции по формуле ~(1). Если значение J \lt \varepsilon,~\varepsilon \gt 0 или |J_{i} - J_{i-1}| \lt \delta,~\delta \gt 0 , то остановить вычисления;

4) Иначе вычислить новые значения матрицы М по формуле ~(3);

5) Перейти к шагу 2

1.3 Вычислительное ядро алгоритма

Вычислительным ядром алгоритма являются формулы: (1) , (2) , (3) . В них производится вычисление новых центров кластеров, значения решающей функции и пересчет элементов матрицы принадлежности.

1.4 Макроструктура алгоритма

Макроструктура алгоритма состоит из следующих шагов:

1) Инициализация матрицы M случайными значениями от 0 до 1;

2) Вычисление центров кластеров;

3) Вычисление значения решающей функции(если оно удовлетворяет условиям останова - завершение вычислений);

4) Вычисление новых элементов матрицы принадлежности;

5) Переход к шагу 2;

1.5 Схема реализации последовательного алгоритма

Пример реализации алгоритма на языке С++

    float ** m;
    int *c;
    int number_clusters, number_items;
    m = gen_random_clusters();//заполним матрицу m случайными значениями от 0 до 1
    
    while (true)
    {
      //вычисление центров кластеров
        for (int i=0; i<number_clusters; i++)
        {
            numerator==denumerator=0;
            for (int k=0; k<number_items; k++)
            {
                numerator+=pow(m[i, k], q)*u[k];//u[k]-вектор
                denumerator+=pow(m[i, k], q);
            }
        c[i]= numerator / denumerator;//центры кластеров
        }
    
        j=0;//вычисление решающей функции
        for (int i=0; i<number_clusters; i++)
            for (int k=0; k<number_items; k++)
                j+=pow(m[i, k], q)*pow(dist(c[i], x[k],2);//dist-вычисляет расстояние между заданными векторами
    
       if ((abs(j-last_j)<delta) || (j<eps)) break;//проверка на необходимость завернешения алгоритма
       last_j=j;
     //обновление матрицы m
       for (int i=0; i<number_clusters; i++)
          for (int k=0; k<number_items; k++)
             {
               m[i,k]=0
              for(int j=0; j<number_clusters; j++)
                  m[i,k]+=pow(dist(c[i], x[k])/dist(c[j], x[k]),2/(q-1));
              m[i,k]=1/m[i,k];
              }
                                       
    }

1.6 Последовательная сложность алгоритма

Каждая итерация включает в себя

  • Вычисление центров кластеров O(C*K)
  • Вычисление решающей функции O(C*K)
  • Обновлене матрицы M O(C*C*K)

Общая сложность каждой итерации O(C*C*K).

Сложность всего алгоритма будет зависеть от числа итераций, которое зависит от

  • Выбора начального приближения
  • Выбора условий останова

Окончательно, сложность алгоритма будет равна произведению количества итераций на их сложность

1.7 Информационный граф

Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные:

  • u_{k} k = 1, ..., K - набор входных векторов;
  • C - количество кластеров;
  • q - экспоненциальный весовой коэффициент, характеризующий нечеткость;
  • \varepsilon \gt 0, ~\delta \gt 0 - коэффициенты, описывающие точность алгоритма.

Выходные данные:

  • M - матрица принадлежности.

1.10 Свойства алгоритма

  • Соотношение последовательной и параллельной сложности алгоритма: C*C*K \over (?). Соответственно при распараллеливании наибольший прирост в производительности мы получим при разбиении большого набора данных на большее число кластеров;
  • Вычислительная мощность: {{C^2*K} \over {C*K}} = C. Получается, что на чем большее количество кластеров мы разбиваем набор данных, тем менее затратным становится перемещение данных;
  • Алгоритм не является устойчивым, как и другие подобные алгоритмы этого класса(например k-means). Очень многое зависит как от входных данных, так и от изначальных параметров приближения(заполнения матрицы принадлежности => исходных центров кластеров);
  • Не является детерминированным. Так же очень многое зависит как от входных данных, так и от изначальных параметров приближения(заполнения матрицы принадлежности => исходных центров кластеров);
  • Алгоритм не сбалансирован - доминирует операция умножения. Параллельные ветви алгоритма сбалансированы;
  • Степень исхода вершины информационного графа - 2.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Можно найти следующие реализации алгоритма

Так же готовые реализации алгоритма и его описание можно найти на сайтах

3 Литература

  1. Нейский И.М. Классификация и сравнение методов кластеризации
  2. Dunn, J. C. (1973-01-01). "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters". Journal of Cybernetics. 3 (3): 32–57. doi:10.1080/01969727308546046. ISSN 0022-0280.
  3. Bezdek, James C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. ISBN 0-306-40671-3.