Участник:Alexander34396/Обобщенный метод минимальных невязок: различия между версиями
Строка 86: | Строка 86: | ||
=== Схема реализации последовательного алгоритма === | === Схема реализации последовательного алгоритма === | ||
− | + | ==== Схема реализации классического GMRES ==== | |
− | + | ||
− | ''' | + | Для решения исходной системы методом GMRES можно воспользоваться следующим алгоритмом: |
+ | |||
+ | '''Подготовка перед итерационным процессом:''' | ||
# Выбрать начальное приближение <math> x_0 </math>; | # Выбрать начальное приближение <math> x_0 </math>; | ||
# Посчитать невязку <math> r_0 = b - Ax_0 </math>; | # Посчитать невязку <math> r_0 = b - Ax_0 </math>; | ||
# Вычислить <math> v_1 = \frac{r_0}{\|r_0\|_2} </math>. | # Вычислить <math> v_1 = \frac{r_0}{\|r_0\|_2} </math>. | ||
+ | |||
+ | '''k-ая итерация:''' | ||
+ | # <math> h_{ik} = (Av_k, v_i), \quad i=1,\ldots,k </math>; | ||
+ | # <math> \hat{v}_{k+1} = Av_k - \sum_{i=1}^k h_{ik}v_{i} </math>; | ||
+ | # <math> h_{k+1k} = \|\hat{v}_{k+1}\|_2 </math>; | ||
+ | # <math> v_{k+1} = \frac{\hat{v}_{k+1}}{h_{k+1k}} </math>; | ||
+ | # <math> x_k = x_0 + V_ky_k </math>, где <math>y_k</math> минимизирует <math>\|r_0 - AV_ky_k\|_2</math>. | ||
+ | |||
+ | ==== Схема реализации перезапускаемого GMRES ==== | ||
+ | |||
+ | На практике используется перезапускаемая версия метода - GMRES(m): | ||
+ | |||
+ | '''1 Подготовка перед итерационным процессом:''' | ||
+ | :1.1 Выбрать начальное приближение <math> x_0 </math>; | ||
+ | :1.2 Посчитать невязку <math> r_0 = b - Ax_0 </math>; | ||
+ | :1.3 Вычислить <math> v_1 = \frac{r_0}{\|r_0\|_2} </math>. | ||
'''2. Построение ортонормированного базиса <math> K_m </math>:''' | '''2. Построение ортонормированного базиса <math> K_m </math>:''' | ||
: Для всех <math> j </math> от 1 до m по нарастанию выполнять: | : Для всех <math> j </math> от 1 до m по нарастанию выполнять: | ||
− | + | :2.1 <math> h_{ij} := (Av_j, v_i), \quad i=1,\ldots,j </math>; | |
− | + | :2.2 <math> \hat{v}_{j+1} := Av_j - \sum_{i=1}^j h_{ij}v_{i} </math>; | |
− | + | :2.3 <math> h_{j+1j} = \|\hat{v}_{j+1}\|_2 </math>; | |
− | + | :2.4 <math> v_{j+1} = \frac{\hat{v}_{j+1}}{h_{j+1j}} </math>. | |
− | '''3 | + | '''3 Вычисление <math> x_m </math>:''' |
− | + | :3.1 <math> x_m = x_0 + V_my_m </math>, где <math>y_m</math> минимизирует <math>\|r_0 - AV_my_m\|_2</math>; | |
− | + | :3.2 Вычислить <math> r_m </math>; | |
− | + | :3.3 Если требуемая точность достигнута, остановиться. | |
− | '''4 | + | '''4 Перезапуск:''' |
− | + | :4.1 <math>x_0 = x_m</math>; | |
− | + | :4.2 <math>v_1 = \frac{r_m}{\|r_m\|_2}</math>; | |
− | + | :4.3 Перейти к шагу 2. | |
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === |
Версия 17:15, 17 октября 2016
Эта работа ждет рассмотрения преподавателем Дата последней правки страницы: 17.10.2016 Авторы этой статьи считают, что задание выполнено. |
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Обобщённый метод минимальных невязок (англ. Generalized minimal residual method, GMRES) - итерационный метод численного решения системы линейных алгебраических уравнений с невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова. Разработан Юсефом Саадом и Мартином Шульцем[1] в 1986 году как обобщение метода MINRES[2] на случай систем с несимметричными матрицами.
1.2 Математическое описание алгоритма
Исходные данные:
- система линейных алгебраических уравнений вида [math] Ax = b [/math], где [math] A [/math] — невырожденная матрица размера [math]n[/math]-на-[math] n [/math];
- [math] x_0 [/math] - начальное приближение.
Вычисляемые данные:
- [math] x_k [/math] - приближённое решение исходной системы.
Метод GMRES приближает точное решение исходной системы [math] Ax = b [/math] вектором [math] x_k [/math], который минимизирует [math] l_2 [/math]-норму невязки [math] r_k = Ax_k - b[/math] на подпространстве Крылова:
- [math] K_k = K_k(A,b) = \operatorname{span} \, \{ b, Ab, A^2b, \ldots, A^{k-1}b \} [/math].
На каждой итерации метода решение уточняется поправкой, представленной в виде разложения по [math] l_2 [/math]-ортонормированному базису пространства [math] K_k [/math]:
- [math] x_k = x_0 + z_k [/math], где [math] x_0 [/math] - некоторое начальное приближение, [math] z_k \in K_k [/math] - поправка решения.
1.2.1 Ортогонализация Арнольди
Для построения ортонормированного базиса [math] K_k [/math] метод использует процесс Арнольди.
Исходные данные:
- [math] v_1 [/math], такой что [math] \|v_1\|_2 = 1 [/math];
- матрица A размером [math] n [/math]-на-[math] n [/math].
Формула процесса:
- [math] h_{j+1j}v_{j+1} = Av_j - \sum_{i=1}^j h_{ij}v_{j} [/math], где [math] h_{ij} = (Av_j, v_i)[/math], [math] \quad j=1,\ldots,k [/math].
Алгоритм процесса:
Выполнять для [math] \quad j=1,\ldots,k [/math]:
- [math] h_{ij} = (Av_j, v_i), \quad i=1,\ldots,j [/math];
- [math] \hat{v}_{j+1} = Av_j - \sum_{i=1}^j h_{ij}v_{i} [/math];
- [math] h_{j+1j} = \|\hat{v}_{j+1}\|_2 [/math];
- [math] v_{j+1} = \frac{\hat{v}_{j+1}}{h_{j+1j}} [/math].
При введении матричных обозначений можно записать:
- [math] z_k = V_ky_k [/math], где [math] y_k \in \mathbb{R}^k [/math] - вектор коэффициентов;
- [math] AV_k = V_kH_k + h_{k+1k}v_{k+1} e_k^T = V_{k+1}\overline{H}_k [/math], где [math] V_k = [v_1|v_2|...|v_k] [/math], а [math] \overline{H}_k [/math] - верхняя матрица Хессенберга размерности [math] (j+1) [/math] на [math] j [/math].
1.2.2 Минимизация функционала невязки
Для решения исходной системы GMRES вычисляет приближённое решение [math] x_k [/math], которое минимизизует функционал невязки:
- [math] J(y) = \|b- A x_k\|_2 = \|b - A(x_0 + V_ky)\|_2 = \|\beta e_1 - \overline{H}_ky_k \|_2 [/math], где [math] \beta = \|r_0\|_2 [/math].
Вектор [math] y_k [/math] может найден как решение линейной задачи наименьших квадратов размера [math] k+1 [/math]-на-[math] k [/math]:
- [math] y_k = \arg\min_{y}\| \beta e_1 - \overline{H}_ky\|_2 [/math].
Для решения задачи матрица [math] \overline{H}_k [/math] приводится к верхнему треугольному виду с помощью [math] k [/math] последовательных вращений Гивенса.
1.2.3 Общая схема метода
В общем виде k-aя итерация алгоритма GMRES может быть записан следующим образом:
- найти ортонормированный базис [math] V_k [/math] подпространства [math] K_k [/math] с помощью ортогонализации Арнольди;
- найти [math] y_k [/math], минимизирующий [math] \|r_k\|_2 [/math];
- вычислить [math] x_k = x_0 + V_ky_k [/math];
- вычислить [math] r_k [/math] и остановиться,если требуемая точность была достигнута, иначе повторить.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро последовательной версии метода GMRES состоит из двух частей:
- Вычисление ортонормированного базиса [math] K_k [/math];
- Формирование приближенного решения [math] x_k [/math].
Для вычисления ортонормированного базиса [math] K_k [/math] метод использует процесс Арнольди:
- [math] h_{j+1j}v_{j+1} = Av_j - \sum_{i=1}^j h_{ij}v_{j} [/math], где [math] h_{ij} = (Av_j, v_i)[/math], [math] \quad j=1,\ldots,k [/math].
Для нахождения приближённого решения [math] x_k [/math] метод использует формулу:
- [math] x_k = x_0 + V_ky_k [/math].
1.4 Макроструктура алгоритма
В алгоритме можно выделить следующие макрооперации:
- Умножение матрицы на вектор;
- Вычисление скалярного произведения векторов;
- Вычисление [math] l_2 [/math]-нормы вектора;
- Умножение вектора на скаляр;
- Деление вектора на скаляр.
1.5 Схема реализации последовательного алгоритма
1.5.1 Схема реализации классического GMRES
Для решения исходной системы методом GMRES можно воспользоваться следующим алгоритмом:
Подготовка перед итерационным процессом:
- Выбрать начальное приближение [math] x_0 [/math];
- Посчитать невязку [math] r_0 = b - Ax_0 [/math];
- Вычислить [math] v_1 = \frac{r_0}{\|r_0\|_2} [/math].
k-ая итерация:
- [math] h_{ik} = (Av_k, v_i), \quad i=1,\ldots,k [/math];
- [math] \hat{v}_{k+1} = Av_k - \sum_{i=1}^k h_{ik}v_{i} [/math];
- [math] h_{k+1k} = \|\hat{v}_{k+1}\|_2 [/math];
- [math] v_{k+1} = \frac{\hat{v}_{k+1}}{h_{k+1k}} [/math];
- [math] x_k = x_0 + V_ky_k [/math], где [math]y_k[/math] минимизирует [math]\|r_0 - AV_ky_k\|_2[/math].
1.5.2 Схема реализации перезапускаемого GMRES
На практике используется перезапускаемая версия метода - GMRES(m):
1 Подготовка перед итерационным процессом:
- 1.1 Выбрать начальное приближение [math] x_0 [/math];
- 1.2 Посчитать невязку [math] r_0 = b - Ax_0 [/math];
- 1.3 Вычислить [math] v_1 = \frac{r_0}{\|r_0\|_2} [/math].
2. Построение ортонормированного базиса [math] K_m [/math]:
- Для всех [math] j [/math] от 1 до m по нарастанию выполнять:
- 2.1 [math] h_{ij} := (Av_j, v_i), \quad i=1,\ldots,j [/math];
- 2.2 [math] \hat{v}_{j+1} := Av_j - \sum_{i=1}^j h_{ij}v_{i} [/math];
- 2.3 [math] h_{j+1j} = \|\hat{v}_{j+1}\|_2 [/math];
- 2.4 [math] v_{j+1} = \frac{\hat{v}_{j+1}}{h_{j+1j}} [/math].
3 Вычисление [math] x_m [/math]:
- 3.1 [math] x_m = x_0 + V_my_m [/math], где [math]y_m[/math] минимизирует [math]\|r_0 - AV_my_m\|_2[/math];
- 3.2 Вычислить [math] r_m [/math];
- 3.3 Если требуемая точность достигнута, остановиться.
4 Перезапуск:
- 4.1 [math]x_0 = x_m[/math];
- 4.2 [math]v_1 = \frac{r_m}{\|r_m\|_2}[/math];
- 4.3 Перейти к шагу 2.
1.6 Последовательная сложность алгоритма
Если пренебречь сложностью вычисления [math] y_k [/math], то общую сложность алгоритма GMRES можно разделить на две части:
1. Сложность вычисления ортонормированного базиса пространства [math] K_k [/math]:
- a) Для вычисления [math] j [/math]-го вектора базиса [math] K_k, j \lt k[/math] требуется:
- [math] NZ + (2j + 1)n [/math] мультипликативных операций, где [math] NZ [/math] - количество ненулевых элементов матрицы [math] A [/math].
- b) Вычисление последнего вектора базиса требует:
- [math] n(k + 1) [/math] мультипликативных операций.
- c) Общая мультипликативная сложность вычисления ортонормированного базиса [math] K_k [/math]:
- [math] nk(k + 1) + kNZ [/math].
2. Сложность вычисления приближённого решения [math] x_k [/math]:
- Вычисление этой формулы требует [math] nk [/math] мультипликативных операций.
1.7 Информационный граф
2 Литература
<references \>
- ↑ Y.Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and Stat. Comp. 7: 856-869 (1986)
- ↑ C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations, SIAM J. Numerical Analysis 12, 617-629 (1975)