Алгоритм Тарьяна поиска компонент двусвязности: различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
Daryin (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
− | '''Алгоритм Тарьяна'''<ref>Tarjan, Robert. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing 1, no. 2 (1972): 146–60.</ref> находит [[Связность в графах|компоненты двусвязности]] неориентированного графа в процессе [[Поиск в глубину (DFS)|поиска в глубину]] | + | '''Алгоритм Тарьяна'''<ref>Tarjan, Robert. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing 1, no. 2 (1972): 146–60.</ref> находит [[Связность в графах|компоненты двусвязности]] и шарниры неориентированного графа в процессе [[Поиск в глубину (DFS)|поиска в глубину]] за время <math>O(m)</math>. |
=== Математическое описание === | === Математическое описание === |
Версия 02:12, 11 июня 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Тарьяна[1] находит компоненты двусвязности и шарниры неориентированного графа в процессе поиска в глубину за время [math]O(m)[/math].
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Последовательная сложность алгоритма Тарьяна составляет [math]O(m)[/math], так как в процессе поиска в ширину выполняется ограниченное количество операций для каждой вершины и каждого ребра.
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Возможности параллелизации алгоритма Тарьяна сильно ограничены, поскольку он основан на поиске в глубину. Параллельный алгоритмом Тарьяна-Вишкина[2] основан на тех же свойствах графа и может использовать любое остовное дерево.
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- Boost Graph Library (функция
biconnected_components
).