Нахождение суммы элементов массива сдваиванием: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(Перенос из Сдваивание-0.1.docx)
 
м (формулы, разметка)
Строка 33: Строка 33:
 
Опишем граф алгоритма в виде рисунка. В данном случае выполнено суммирование 16 элементов массива.
 
Опишем граф алгоритма в виде рисунка. В данном случае выполнено суммирование 16 элементов массива.
  
{| align="left"
+
[[file:binary-tree-based summation graph.png|center|thumb|500px]]
    |- valign="top"
 
    | [[File:binary-tree-based summation graph.png|thumb|500px]]
 
|}
 
  
 
=== Описание ресурса параллелизма алгоритма ===
 
=== Описание ресурса параллелизма алгоритма ===
  
Для суммирования массива порядка <math>n</math> методом сдваивания в параллельном варианте требуется последовательно выполнить <math>\lceil \log_2 n \rceil</math> ярусов с убывающим (от <math>n / 2</math> до 1) количеством операций суммирования.
+
Для суммирования массива порядка <math>n</math> методом сдваивания в параллельном варианте требуется последовательно выполнить <math>\lceil \log_2 n \rceil</math> ярусов с убывающим (от <math>\frac{n}{2}</math> до <math>1</math>) количеством операций суммирования.
 
При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''.
 
При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''.
  
Строка 49: Строка 46:
 
Дополнительные ограничения: отсутствуют.
 
Дополнительные ограничения: отсутствуют.
  
Объём входных данных: <math>N</math>.  
+
Объём входных данных: <nowiki/><math>N</math>.  
  
 
Выходные данные: сумма элементов массива.
 
Выходные данные: сумма элементов массива.

Версия 20:31, 15 июня 2014

Содержание

1 Описание свойств и структуры алгоритма

1.1 Словесное описание алгоритма

Метод сдваивания используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря как наименьшей из возможных высоте алгортима, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.

1.2 Математическое описание

Исходные данные: одномерный массив [math]n[/math] чисел.

Вычисляемые данные: сумма элементов массива.

Формулы метода: элементы на каждом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро последовательно-параллельного метода суммирования можно составить как из элементарных бинарных (всего [math]n - 1[/math]) вычислений сумм, так и (рекуррентно) из набора реализаций метода сдваивания меньших размерностей.

1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода составляют рекурсивные вызовы сумм массивов меньшей размерности.

1.5 Описание схемы реализации последовательного алгоритма

В своём чистом виде суммирование сдваиванием редко используют при последовательной реализации, поскольку при этом усложняется общая схема алгоритма и резко растёт потребность в памяти, нужной для хранения промежуточных данных.

1.6 Последовательная сложность алгоритма

Для вычисления суммы массива, состоящего из [math]N[/math] элементов, при любых разложениях [math]N[/math] на пары суть алгоритма сводится к простому переставлению скобок в формуле суммирования, и количество операций неизменно и равно [math]N - 1[/math]. Поэтому алгоритм должен быть отнесён к алгоритмам линейной сложности по количеству последовательных операций.

1.7 Информационный граф

Опишем граф алгоритма в виде рисунка. В данном случае выполнено суммирование 16 элементов массива.

Binary-tree-based summation graph.png

1.8 Описание ресурса параллелизма алгоритма

Для суммирования массива порядка [math]n[/math] методом сдваивания в параллельном варианте требуется последовательно выполнить [math]\lceil \log_2 n \rceil[/math] ярусов с убывающим (от [math]\frac{n}{2}[/math] до [math]1[/math]) количеством операций суммирования. При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с логарифмической сложностью. При классификации по ширине ЯПФ его сложность будет линейной.

1.9 Описание входных и выходных данных

Входные данные: массив [math]x[/math] (элементы [math]x_i[/math]).

Дополнительные ограничения: отсутствуют.

Объём входных данных: [math]N[/math].

Выходные данные: сумма элементов массива.

Объём выходных данных: один скаляр.

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является [math]\frac{n}{\log_2 n}[/math] (отношение линейной к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего 1 (входных и выходных данных столько же, сколько операций). При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.

2 Программная реализация

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.2.1 Описание локальности алгоритма

2.2.2 Описание локальности реализации алгоритма

2.2.2.1 Описание структуры обращений в память и качественная оценка локальности
2.2.2.2 Количественная оценка локальности
2.2.2.3 Анализ на основе теста Apex-Map

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Описание масштабируемости алгоритма

2.4.2 Описание масштабируемости реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма