Алгоритм Тарьяна поиска компонент двусвязности: различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
Daryin (обсуждение | вклад) |
||
Строка 28: | Строка 28: | ||
=== Существующие реализации алгоритма === | === Существующие реализации алгоритма === | ||
− | * [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функция <code>[http://www.boost.org/libs/graph/doc/biconnected_components.html biconnected_components]</code>). | + | * C++: [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функция <code>[http://www.boost.org/libs/graph/doc/biconnected_components.html biconnected_components]</code>). |
+ | * Python: [https://networkx.github.io NetworkX] (функция <code>[http://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.components.biconnected.biconnected_components.html biconnected_components]</code>). | ||
== Литература == | == Литература == | ||
<references /> | <references /> |
Версия 21:19, 11 июня 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Тарьяна[1] находит компоненты двусвязности и шарниры неориентированного графа в процессе поиска в глубину за время [math]O(m)[/math].
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Последовательная сложность алгоритма Тарьяна составляет [math]O(m)[/math], так как в процессе поиска в ширину выполняется ограниченное количество операций для каждой вершины и каждого ребра.
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Возможности параллелизации алгоритма Тарьяна сильно ограничены, поскольку он основан на поиске в глубину. Параллельный алгоритмом Тарьяна-Вишкина[2] основан на тех же свойствах графа и может использовать любое остовное дерево.
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
biconnected_components
). - Python: NetworkX (функция
biconnected_components
).