Алгоритм Ланцоша с выборочной ортогонализацией: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 4: Строка 4:
  
  
Подается вещественная симметричная матрица  <math>A = A^{T}</math>,
+
Дается вещественная симметричная матрица  <math>A = A^T</math>,
 
{{Шаблон:ASymmetric}},
 
{{Шаблон:ASymmetric}},
случайны вектор <math>b </math>, являющийся первым приближением собственного вектора, <math>k </math> - количество собственных значений и собственных векторов, которые мы хотим найти.
+
случайный вектор <math>b </math>, являющийся первым приближением собственного вектора матрицы, <math>k </math> - количество собственных значений и собственных векторов, которые мы хотим найти.
  
 
+
На каждой итерации строится матрица <math>Q_j = [q_1, q_2, \dots, q_j]</math> размерности <math>n \times j</math>, состоящая из ортонормированных векторов Ланцоша. В качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы <math>T_j = Q^T_j A Q</math> размерности <math>j \times j</math>.
На каждой итерации строится матрица <math>Q_j = [q_1, q_2, \dots, q_j]</math> размерности <math>n \times j</math>, состоящая из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы <math>T_k = Q^T_k A Q</math> размерности <math>k \times k</math>.
 
  
 
:<math>
 
:<math>
T_k = \begin{pmatrix}
+
T_j = \begin{pmatrix}
 
\alpha_1 & \beta_1 \\
 
\alpha_1 & \beta_1 \\
 
\beta_1 & \alpha_2 & \beta_2 \\
 
\beta_1 & \alpha_2 & \beta_2 \\
 
& \beta_2 & \ddots & \ddots \\
 
& \beta_2 & \ddots & \ddots \\
& & \ddots & \ddots & \beta_{k-1} \\
+
& & \ddots & \ddots & \beta_{j-1} \\
& & & \beta_{k-1} & \alpha_k
+
& & & \beta_{j-1} & \alpha_j
 
\end{pmatrix}
 
\end{pmatrix}
 
</math>
 
</math>

Версия 17:50, 11 декабря 2016

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Лáнцоша представляет собой мощный метод для нахождения нескольких собственных значений и собственных векторов симметричной матрицы А и для решения систем линейных уравнений. Алгоритм особенно эффективен, если матрица А разреженная и большого размера. Однако любая практическая реализация этого алгоритма страдает от ошибок округления, т.к. векторы Ланцоша теряют взаимную ортогональность. Для того чтобы поддерживать некоторый уровень ортогональности, появились методы полной переортогонализации и выборочной ортогонализации. В этой работе мы рассмотрим последний метод в качестве способа для поддержания ортогональности среди векторов Ланцоша. Он обладает почти столь же высокой точностью, как алгоритм с полной переортогонализацией, и почти столь же низкой стоимостью, как алгоритм без ортогонализации.


Дается вещественная симметричная матрица [math]A = A^T[/math],

[math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math],

случайный вектор [math]b [/math], являющийся первым приближением собственного вектора матрицы, [math]k [/math] - количество собственных значений и собственных векторов, которые мы хотим найти.

На каждой итерации строится матрица [math]Q_j = [q_1, q_2, \dots, q_j][/math] размерности [math]n \times j[/math], состоящая из ортонормированных векторов Ланцоша. В качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы [math]T_j = Q^T_j A Q[/math] размерности [math]j \times j[/math].

[math] T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix} [/math]


Он состоит в том, что на каждом шаге проверяется

[math] \beta_0=0,q_0=0[/math]
[math] q_{1} = \frac{b_{j}}{\|b\|_2}[/math], где [math] \|b\|_2 = \sqrt{\sum\limits_{j=1}^{n} b_j^2}[/math]
[math] for\, j=1\,\, to\, \, k\, \, do:[/math]
    [math]z=Aq_j,  [/math]
    [math]\alpha_j=q_j^Tz, [/math]
    [math]z=z-\alpha_jq_j-\beta_{j-1}q_{j-1},  [/math]
    [math]for\, i=1\,\, to\, \, j-1\, \, do: [/math]
        [math]if\,  \beta_j|v_i(j)| \leqslant \sqrt{\varepsilon}\|T_j\| [/math]
            [math]z = z-(y^T_{i,j},z)y_{i,j} [/math], где [math]y_{i,j} = Q_jv_i[/math] 
    [math]\beta_{j}=\|z\|_2 [/math]
    [math]q_{j+1}=z/\beta_{j}, [/math]
    Вычисляем собственные значения и собственные векторы полученной матрицы [math]T_j[/math].