Алгоритм Ланцоша с выборочной ортогонализацией: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Qmakar (обсуждение | вклад) |
Qmakar (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
Дается вещественная симметричная матрица <math>A = A^T</math>, | Дается вещественная симметричная матрица <math>A = A^T</math>, | ||
{{Шаблон:ASymmetric}}, | {{Шаблон:ASymmetric}}, | ||
− | случайный вектор <math>b </math>, являющийся первым приближением собственного вектора матрицы, <math>k </math> - количество собственных значений и собственных векторов, которые мы хотим найти. | + | случайный вектор <math>b </math>, являющийся первым приближением собственного вектора матрицы, <math>k </math> - количество собственных значений и собственных векторов, которые мы хотим найти, т.е. количество итераций. |
− | На каждой итерации строится матрица <math>Q_j = [q_1, q_2, \dots, q_j]</math> размерности <math>n \times j</math>, состоящая из ортонормированных векторов Ланцоша. В качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы <math>T_j = Q^T_j A | + | На каждой итерации строится матрица <math>Q_j = [q_1, q_2, \dots, q_j]</math> размерности <math>n \times j</math>, состоящая из ортонормированных векторов Ланцоша. В качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы <math>T_j = Q^T_j A Q_j</math> размерности <math>j \times j</math>. |
:<math> | :<math> | ||
Строка 20: | Строка 20: | ||
</math> | </math> | ||
− | + | Однако, векторы <math>q_j </math> теряют ортогональность вследствие приобритения больших компонент в направлениях векторов Ритца <math>y_{i,j} = Q_j v_i </math>, отвечающих сошедшимся числам Ритца <math> \theta_i </math>. Поэтому предлагается на каждом шаге следить за оценками погрешностей <math>\beta_j|v_i(j)| </math>, где <math>v_i(j) </math> - <math>j</math>-я компонента собственного вектора <math>v_i </math>. И когда какая-то оценка становится слишком малой, проводить ортогонализацию вектора Ланцоша. | |
− | |||
− | |||
<math> \beta_0=0,q_0=0</math> | <math> \beta_0=0,q_0=0</math> |
Версия 18:07, 11 декабря 2016
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Лáнцоша представляет собой мощный метод для нахождения нескольких собственных значений и собственных векторов симметричной матрицы А и для решения систем линейных уравнений. Алгоритм особенно эффективен, если матрица А разреженная и большого размера. Однако любая практическая реализация этого алгоритма страдает от ошибок округления, т.к. векторы Ланцоша теряют взаимную ортогональность. Для того чтобы поддерживать некоторый уровень ортогональности, появились методы полной переортогонализации и выборочной ортогонализации. В этой работе мы рассмотрим последний метод в качестве способа для поддержания ортогональности среди векторов Ланцоша. Он обладает почти столь же высокой точностью, как алгоритм с полной переортогонализацией, и почти столь же низкой стоимостью, как алгоритм без ортогонализации.
Дается вещественная симметричная матрица [math]A = A^T[/math],
- [math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math],
случайный вектор [math]b [/math], являющийся первым приближением собственного вектора матрицы, [math]k [/math] - количество собственных значений и собственных векторов, которые мы хотим найти, т.е. количество итераций.
На каждой итерации строится матрица [math]Q_j = [q_1, q_2, \dots, q_j][/math] размерности [math]n \times j[/math], состоящая из ортонормированных векторов Ланцоша. В качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы [math]T_j = Q^T_j A Q_j[/math] размерности [math]j \times j[/math].
- [math] T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix} [/math]
Однако, векторы [math]q_j [/math] теряют ортогональность вследствие приобритения больших компонент в направлениях векторов Ритца [math]y_{i,j} = Q_j v_i [/math], отвечающих сошедшимся числам Ритца [math] \theta_i [/math]. Поэтому предлагается на каждом шаге следить за оценками погрешностей [math]\beta_j|v_i(j)| [/math], где [math]v_i(j) [/math] - [math]j[/math]-я компонента собственного вектора [math]v_i [/math]. И когда какая-то оценка становится слишком малой, проводить ортогонализацию вектора Ланцоша.
[math] \beta_0=0,q_0=0[/math] [math] q_{1} = \frac{b_{j}}{\|b\|_2}[/math], где [math] \|b\|_2 = \sqrt{\sum\limits_{j=1}^{n} b_j^2}[/math] [math] for\, j=1\,\, to\, \, k\, \, do:[/math] [math]z=Aq_j, [/math] [math]\alpha_j=q_j^Tz, [/math] [math]z=z-\alpha_jq_j-\beta_{j-1}q_{j-1}, [/math] [math]for\, i=1\,\, to\, \, j-1\, \, do: [/math] [math]if\, \beta_j|v_i(j)| \leqslant \sqrt{\varepsilon}\|T_j\| [/math] [math]z = z-(y^T_{i,j},z)y_{i,j} [/math], где [math]y_{i,j} = Q_jv_i[/math] [math]\beta_{j}=\|z\|_2 [/math] [math]q_{j+1}=z/\beta_{j}, [/math] Вычисляем собственные значения и собственные векторы полученной матрицы [math]T_j[/math].