Уровень алгоритма

Прогонка, точечный вариант: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 38: Строка 38:
 
</math>
 
</math>
  
Часто, однако, при изложении сути метода прогонки<ref>Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.</ref> элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид (<math>N=n+1</math>)
+
Часто, однако, при изложении сути метода прогонки<ref name="SETKI">Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.</ref> элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид (<math>N=n+1</math>)
  
 
:<math>
 
:<math>
Строка 66: Строка 66:
 
-a_{N} y_{N-1} + c_{N} y_{N} = f_{N}
 
-a_{N} y_{N-1} + c_{N} y_{N} = f_{N}
 
</math>
 
</math>
 +
 +
Суть метода - в исключении из уравнений неизвестных, сначала - сверху вниз - под диагональю, а потом - снизу вверх - над диагональю.
  
 
=== Математическое описание ===
 
=== Математическое описание ===
Строка 82: Строка 84:
 
y_{i} = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = N-1, N-2, \cdots , 1, 0.
 
y_{i} = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = N-1, N-2, \cdots , 1, 0.
 
</math>
 
</math>
 +
 +
В литературе<ref name="SETKI" /> указывается, что данные формулы эквиваленты вычислению одного из <math>LU</math>-разложений матрицы системы с последующим решением двухдиагональных систем методом обратной подстановки.
 +
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===

Версия 10:53, 16 июля 2015


Прогонка для трёхдиагональной матрицы, точечный вариант
Последовательный алгоритм
Последовательная сложность [math]8n-7[/math]
Объём входных данных [math]4n-2[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(n)[/math]
Ширина ярусно-параллельной формы [math]2[/math]


Основные авторы описания: А.В.Фролов


1 Свойства и структура алгоритмов

Граф алгоритма при n=8 без отображения входных и выходных данных. / - деление, f - операция a+bc или a-bc.

1.1 Общее описание алгоритма

Прогонка - один из вариантов метода исключения неизвестных в приложении к решению СЛАУ[1][2] вида [math]Ax = b[/math], где

[math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \end{bmatrix} [/math]

Часто, однако, при изложении сути метода прогонки[3] элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид ([math]N=n+1[/math])

[math] A = \begin{bmatrix} c_{0} & -b_{0} & 0 & \cdots & \cdots & 0 \\ -a_{1} & c_{1} & -b_{1} & \cdots & \cdots & 0 \\ 0 & -a_{2} & c_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -a_{N-1} & c_{N-1} & -b_{N-1} \\ 0 & \cdots & \cdots & 0 & -a_{N} & c_{N} \\ \end{bmatrix}\begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N} \\ \end{bmatrix} = \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{N} \\ \end{bmatrix} [/math]

или, если записывать отдельно по уравнениям, то

[math] c_{0} y_{0} - b_{0} y_{1} = f_{0},\\ -a_{i} y_{i-1} + c_{i} y_{i} - b_{i} y_{i+1} = f_{i}, 1 \le i \le N-1, \\ -a_{N} y_{N-1} + c_{N} y_{N} = f_{N} [/math]

Суть метода - в исключении из уравнений неизвестных, сначала - сверху вниз - под диагональю, а потом - снизу вверх - над диагональю.

1.2 Математическое описание

В приведённых обозначениях в прогонке сначала выполняют её прямой ход - вычисляют коэффициенты

[math] \alpha_{1} = b_{0}/c_{0},\\ \beta_{1} = f_{0}/c_{0}, \\ \alpha_{i+1} = b_{i}/(c_{i}-a_{i}\alpha_{i}), \quad i = 1, 2, \cdots , N-1, \\ \beta_{i+1} = (f_{i}+a_{i}\beta_{i}/(c_{i}-a_{i}\alpha_{i}), \quad i = 1, 2, \cdots , N. [/math]

после чего вычисляют решение с помощью обратного хода

[math] y_{N} = \beta_{N+1}, \\ y_{i} = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = N-1, N-2, \cdots , 1, 0. [/math]

В литературе[3] указывается, что данные формулы эквиваленты вычислению одного из [math]LU[/math]-разложений матрицы системы с последующим решением двухдиагональных систем методом обратной подстановки.

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  2. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
  3. 3,0 3,1 Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.