Алгоритм Беллмана-Форда: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
ASA (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | == Свойства и структура | + | == Свойства и структура алгоритма == |
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
'''Алгоритм Беллмана-Форда'''<ref>Bellman, Richard. “On a Routing Problem.” Quarterly of Applied Mathematics 16 (1958): 87–90.</ref><ref>Ford, L R. Network Flow Theory. Rand.org, RAND Corporation, 1958.</ref><ref>Moore, Edward F. “The Shortest Path Through a Maze,” International Symposium on the Theory of Switching, 285–92, 1959.</ref> предназначен для решения [[Поиск кратчайшего пути от одной вершины (SSSP)|задачи поиска кратчайшего пути на графе]]. Для заданного ориентированного взвешенного графа алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Беллмана-Форда масштабируется хуже других алгоритмов решения указанной задачи (сложность <math>O(mn)</math> против <math>O(m + n\ln n)</math> у [[Алгоритм Дейкстры|алгоритма Дейкстры]]), однако его отличительной особенностью является применимость к графам с произвольными, в том числе отрицательными, весами. | '''Алгоритм Беллмана-Форда'''<ref>Bellman, Richard. “On a Routing Problem.” Quarterly of Applied Mathematics 16 (1958): 87–90.</ref><ref>Ford, L R. Network Flow Theory. Rand.org, RAND Corporation, 1958.</ref><ref>Moore, Edward F. “The Shortest Path Through a Maze,” International Symposium on the Theory of Switching, 285–92, 1959.</ref> предназначен для решения [[Поиск кратчайшего пути от одной вершины (SSSP)|задачи поиска кратчайшего пути на графе]]. Для заданного ориентированного взвешенного графа алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Беллмана-Форда масштабируется хуже других алгоритмов решения указанной задачи (сложность <math>O(mn)</math> против <math>O(m + n\ln n)</math> у [[Алгоритм Дейкстры|алгоритма Дейкстры]]), однако его отличительной особенностью является применимость к графам с произвольными, в том числе отрицательными, весами. | ||
− | === Математическое описание === | + | === Математическое описание алгоритма === |
Пусть задан граф <math>G = (V, E)</math> с весами рёбер <math>f(e)</math> и выделенной вершиной-источником <math>u</math>. Обозначим через <math>d(v)</math> кратчайшее расстояние от источника <math>u</math> до вершины <math>v</math>. | Пусть задан граф <math>G = (V, E)</math> с весами рёбер <math>f(e)</math> и выделенной вершиной-источником <math>u</math>. Обозначим через <math>d(v)</math> кратчайшее расстояние от источника <math>u</math> до вершины <math>v</math>. | ||
Строка 21: | Строка 21: | ||
* Далее происходит <math>n-1</math> итерация, в ходе каждой из которых производится релаксация всех рёбер графа. | * Далее происходит <math>n-1</math> итерация, в ходе каждой из которых производится релаксация всех рёбер графа. | ||
− | === | + | === Схема реализации последовательного алгоритма === |
Последовательный алгоритм реализуется следующим псевдокодом: | Последовательный алгоритм реализуется следующим псевдокодом: | ||
Строка 46: | Строка 46: | ||
=== Информационный граф === | === Информационный граф === | ||
− | === | + | === Ресурс параллелизма алгоритма === |
При использовании атомарных операций для вычисления минимума релаксация рёбер может производится параллельно. В этом случае потребуется <math>O(n)</math> шагов при использовании <math>O(m)</math> процессоров. | При использовании атомарных операций для вычисления минимума релаксация рёбер может производится параллельно. В этом случае потребуется <math>O(n)</math> шагов при использовании <math>O(m)</math> процессоров. | ||
Строка 52: | Строка 52: | ||
[[Алгоритм Δ-шагания]] может рассматриваться как параллельная версия алгоритма Беллмана-Форда. | [[Алгоритм Δ-шагания]] может рассматриваться как параллельная версия алгоритма Беллмана-Форда. | ||
− | === | + | === Входные и выходные данные алгоритма === |
'''Входные данные''': взвешенный граф <math>(V, E, W)</math> (<math>n</math> вершин <math>v_i</math> и <math>m</math> рёбер <math>e_j = (v^{(1)}_{j}, v^{(2)}_{j})</math> с весами <math>f_j</math>), вершина-источник <math>u</math>. | '''Входные данные''': взвешенный граф <math>(V, E, W)</math> (<math>n</math> вершин <math>v_i</math> и <math>m</math> рёбер <math>e_j = (v^{(1)}_{j}, v^{(2)}_{j})</math> с весами <math>f_j</math>), вершина-источник <math>u</math>. | ||
Строка 72: | Строка 72: | ||
где <math>f(e)</math> – вес ребра <math>e</math>. Условие может быть проверено для всех рёбер графа за время <math>O(m)</math>. | где <math>f(e)</math> – вес ребра <math>e</math>. Условие может быть проверено для всех рёбер графа за время <math>O(m)</math>. | ||
− | == Программная реализация | + | == Программная реализация алгоритма == |
=== Особенности реализации последовательного алгоритма === | === Особенности реализации последовательного алгоритма === | ||
− | === | + | === Локальность данных и вычислений === |
− | === Возможные способы и особенности реализации | + | ==== Локальность реализации алгоритма ==== |
+ | ===== Структура обращений в память и качественная оценка локальности ===== | ||
+ | ===== Количественная оценка локальности ===== | ||
+ | === Возможные способы и особенности параллельной реализации алгоритма === | ||
=== Масштабируемость алгоритма и его реализации === | === Масштабируемость алгоритма и его реализации === | ||
+ | ==== Масштабируемость алгоритма ==== | ||
+ | ==== Масштабируемость реализации алгоритма ==== | ||
=== Динамические характеристики и эффективность реализации алгоритма === | === Динамические характеристики и эффективность реализации алгоритма === | ||
=== Выводы для классов архитектур === | === Выводы для классов архитектур === | ||
Строка 88: | Строка 93: | ||
<references /> | <references /> | ||
+ | |||
+ | [[Категория:Начатые статьи]] |
Версия 14:02, 29 июля 2015
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Беллмана-Форда[1][2][3] предназначен для решения задачи поиска кратчайшего пути на графе. Для заданного ориентированного взвешенного графа алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Беллмана-Форда масштабируется хуже других алгоритмов решения указанной задачи (сложность [math]O(mn)[/math] против [math]O(m + n\ln n)[/math] у алгоритма Дейкстры), однако его отличительной особенностью является применимость к графам с произвольными, в том числе отрицательными, весами.
1.2 Математическое описание алгоритма
Пусть задан граф [math]G = (V, E)[/math] с весами рёбер [math]f(e)[/math] и выделенной вершиной-источником [math]u[/math]. Обозначим через [math]d(v)[/math] кратчайшее расстояние от источника [math]u[/math] до вершины [math]v[/math].
Алгоритм Беллмана-Форда ищет функцию [math]d(v)[/math] как единственное решение уравнения
- [math] d(v) = \min \{ d(w) + f(e) \mid e = (w, v) \in E \}, \quad \forall v \ne u, [/math]
с начальным условием [math]d(u) = 0[/math].
1.3 Вычислительное ядро алгоритма
Основной операцией алгоритма является релаксация ребра: если [math]e = (w, v) \in E[/math] и [math]d(v) \gt d(w) + f(e)[/math], то производится присваивание [math]d(v) \leftarrow d(w) + f(e)[/math].
1.4 Макроструктура алгоритма
Алгоритм последовательно уточняет значения функции [math]d(v)[/math].
- В самом начале производится присваивание [math]d(u) = 0[/math], [math]d(v) = \infty[/math], [math]\forall v \ne u[/math].
- Далее происходит [math]n-1[/math] итерация, в ходе каждой из которых производится релаксация всех рёбер графа.
1.5 Схема реализации последовательного алгоритма
Последовательный алгоритм реализуется следующим псевдокодом:
Входные данные: граф с вершинами V, рёбрами E с весами f(e); вершина-источник u. Выходные данные: расстояния d(v) до каждой вершины v ∈ V от вершины u. for each v ∈ V do d(v) := ∞ d(u) = 0 for i from 1 to |V| - 1: for each e = (w, v) ∈ E: if d(v) > d(w) + f(e): d(v) := d(w) + f(e)
1.6 Последовательная сложность алгоритма
Алгоритм выполняет [math]n-1[/math] итерацию, на каждой из которых происходит релаксация [math]m[/math] рёбер. Таким образом, общий объём работы составляет [math]O(mn)[/math] операций.
Константа в оценке сложности может быть уменьшена за счёт использования следующих двух стандартных приёмов.
- Если на очередной итерации не произошло ни одной успешной релаксации, то алгоритм завершает работу.
- На очередной итерации рассматриваются не все рёбра, а только выходящие из вершин, для которых на прошлой итерации была выполнена успешная релаксация (на первой итерации – только рёбра, выходящие из источника).
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
При использовании атомарных операций для вычисления минимума релаксация рёбер может производится параллельно. В этом случае потребуется [math]O(n)[/math] шагов при использовании [math]O(m)[/math] процессоров.
Алгоритм Δ-шагания может рассматриваться как параллельная версия алгоритма Беллмана-Форда.
1.9 Входные и выходные данные алгоритма
Входные данные: взвешенный граф [math](V, E, W)[/math] ([math]n[/math] вершин [math]v_i[/math] и [math]m[/math] рёбер [math]e_j = (v^{(1)}_{j}, v^{(2)}_{j})[/math] с весами [math]f_j[/math]), вершина-источник [math]u[/math].
Объём входных данных: [math]O(m + n)[/math].
Выходные данные (возможные варианты):
- для каждой вершины [math]v[/math] исходного графа – последнее ребро [math]e^*_v = (w, v)[/math], лежащее на кратчайшем пути от вершины [math]u[/math] к [math]v[/math], или соответствующая вершина [math]w[/math];
- для каждой вершины [math]v[/math] исходного графа – суммарный вес [math]f^*(v)[/math] кратчайшего пути от от вершины [math]u[/math] к [math]v[/math].
Объём выходных данных: [math]O(n)[/math].
1.10 Свойства алгоритма
Алгоритм может распознавать наличие отрицательных циклов в графе. Ребро [math]e = (v, w)[/math] лежит на таком цикле, если вычисленные алгоритмом кратчайшие расстояния [math]d(v)[/math] удовлетворяют условию
- [math] d(v) + f(e) \lt d(w), [/math]
где [math]f(e)[/math] – вес ребра [math]e[/math]. Условие может быть проверено для всех рёбер графа за время [math]O(m)[/math].
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
bellman_ford_shortest
). - Python: NetworkX (функция
bellman_ford
). - Java: JGraphT (класс
BellmanFordShortestPath
).