Алгоритм DCSC поиска компонент сильной связности: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
ASA (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | == Свойства и структура | + | == Свойства и структура алгоритма == |
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
Строка 5: | Строка 5: | ||
'''Алгоритм DCSC'''<ref>Fleischer, Lisa K, Bruce Hendrickson, and Ali Pınar. “On Identifying Strongly Connected Components in Parallel.” In Lecture Notes in Computer Science, Volume 1800, Springer, 2000, pp. 505–11. doi:10.1007/3-540-45591-4_68.</ref><ref>McLendon, William, III, Bruce Hendrickson, Steven J Plimpton, and Lawrence Rauchwerger. “Finding Strongly Connected Components in Distributed Graphs.” Journal of Parallel and Distributed Computing 65, no. 8 (August 2005): 901–10. doi:10.1016/j.jpdc.2005.03.007.</ref><ref>Hong, Sungpack, Nicole C Rodia, and Kunle Olukotun. “On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs,” Proceeedings of SC'13, 1–11, New York, New York, USA: ACM Press, 2013. doi:10.1145/2503210.2503246.</ref> (англ. Divide and Conquer Strong Components – компоненты сильной связности по принципу «Разделяй и властвуй») находит [[Связность в графах|компоненты сильной связности]] ориентированного графа с ожидаемой работой <math>O(n \ln n)</math> (при условии ограниченной степени вершин). | '''Алгоритм DCSC'''<ref>Fleischer, Lisa K, Bruce Hendrickson, and Ali Pınar. “On Identifying Strongly Connected Components in Parallel.” In Lecture Notes in Computer Science, Volume 1800, Springer, 2000, pp. 505–11. doi:10.1007/3-540-45591-4_68.</ref><ref>McLendon, William, III, Bruce Hendrickson, Steven J Plimpton, and Lawrence Rauchwerger. “Finding Strongly Connected Components in Distributed Graphs.” Journal of Parallel and Distributed Computing 65, no. 8 (August 2005): 901–10. doi:10.1016/j.jpdc.2005.03.007.</ref><ref>Hong, Sungpack, Nicole C Rodia, and Kunle Olukotun. “On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs,” Proceeedings of SC'13, 1–11, New York, New York, USA: ACM Press, 2013. doi:10.1145/2503210.2503246.</ref> (англ. Divide and Conquer Strong Components – компоненты сильной связности по принципу «Разделяй и властвуй») находит [[Связность в графах|компоненты сильной связности]] ориентированного графа с ожидаемой работой <math>O(n \ln n)</math> (при условии ограниченной степени вершин). | ||
− | === Математическое описание === | + | === Математическое описание алгоритма === |
=== Вычислительное ядро алгоритма === | === Вычислительное ядро алгоритма === | ||
=== Макроструктура алгоритма === | === Макроструктура алгоритма === | ||
− | === | + | === Схема реализации последовательного алгоритма === |
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
Строка 14: | Строка 14: | ||
=== Информационный граф === | === Информационный граф === | ||
− | === | + | === Ресурс параллелизма алгоритма === |
Алгоритм изначально предназначен для параллельной реализации: на каждом шаге он находит одну компоненту сильной связности и выделяет до трёх подмножеств графа, которые содержат другие компоненты связности и могут обрабатываться параллельно. Алгоритм не подходит для графов, в которых имеется малое число компонент сильной связности, так как ход исполнения алгоритма в этом случае фактически является последовательным. | Алгоритм изначально предназначен для параллельной реализации: на каждом шаге он находит одну компоненту сильной связности и выделяет до трёх подмножеств графа, которые содержат другие компоненты связности и могут обрабатываться параллельно. Алгоритм не подходит для графов, в которых имеется малое число компонент сильной связности, так как ход исполнения алгоритма в этом случае фактически является последовательным. | ||
− | === | + | === Входные и выходные данные алгоритма === |
− | === Свойства алгоритма=== | + | === Свойства алгоритма === |
− | == Программная реализация | + | == Программная реализация алгоритма == |
=== Особенности реализации последовательного алгоритма === | === Особенности реализации последовательного алгоритма === | ||
− | === | + | === Локальность данных и вычислений === |
− | === Возможные способы и особенности реализации | + | ==== Локальность реализации алгоритма ==== |
+ | ===== Структура обращений в память и качественная оценка локальности ===== | ||
+ | ===== Количественная оценка локальности ===== | ||
+ | === Возможные способы и особенности параллельной реализации алгоритма === | ||
=== Масштабируемость алгоритма и его реализации === | === Масштабируемость алгоритма и его реализации === | ||
+ | ==== Масштабируемость алгоритма ==== | ||
+ | ==== Масштабируемость реализации алгоритма ==== | ||
=== Динамические характеристики и эффективность реализации алгоритма === | === Динамические характеристики и эффективность реализации алгоритма === | ||
=== Выводы для классов архитектур === | === Выводы для классов архитектур === | ||
Строка 35: | Строка 40: | ||
<references /> | <references /> | ||
+ | |||
+ | [[Категория:Начатые статьи]] |
Версия 14:25, 29 июля 2015
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм DCSC[1][2][3] (англ. Divide and Conquer Strong Components – компоненты сильной связности по принципу «Разделяй и властвуй») находит компоненты сильной связности ориентированного графа с ожидаемой работой [math]O(n \ln n)[/math] (при условии ограниченной степени вершин).
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Ожидаемая последовательная сложность алгоритма составляет [math]O(n \ln n)[/math] при условии, что степень вершин ограничена сверху константой.
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
Алгоритм изначально предназначен для параллельной реализации: на каждом шаге он находит одну компоненту сильной связности и выделяет до трёх подмножеств графа, которые содержат другие компоненты связности и могут обрабатываться параллельно. Алгоритм не подходит для графов, в которых имеется малое число компонент сильной связности, так как ход исполнения алгоритма в этом случае фактически является последовательным.
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++, MPI: Parallel Boost Graph Library (функция
strong_components
), распределённый алгоритм DCSC сочетается с локальным поиском компонент сильной связности алгоритмом Тарьяна.
3 Литература
- ↑ Fleischer, Lisa K, Bruce Hendrickson, and Ali Pınar. “On Identifying Strongly Connected Components in Parallel.” In Lecture Notes in Computer Science, Volume 1800, Springer, 2000, pp. 505–11. doi:10.1007/3-540-45591-4_68.
- ↑ McLendon, William, III, Bruce Hendrickson, Steven J Plimpton, and Lawrence Rauchwerger. “Finding Strongly Connected Components in Distributed Graphs.” Journal of Parallel and Distributed Computing 65, no. 8 (August 2005): 901–10. doi:10.1016/j.jpdc.2005.03.007.
- ↑ Hong, Sungpack, Nicole C Rodia, and Kunle Olukotun. “On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs,” Proceeedings of SC'13, 1–11, New York, New York, USA: ACM Press, 2013. doi:10.1145/2503210.2503246.