Алгоритм Габова определения рёберной связности графа: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(Общее описание алгоритма)
 
Строка 1: Строка 1:
== Свойства и структура алгоритмов ==
+
== Свойства и структура алгоритма ==
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
  
 
'''Алгоритм Габова'''<ref>Gabow, H N. “A Matroid Approach to Finding Edge Connectivity and Packing Arborescences.” Journal of Computer and System Sciences 50, no. 2 (April 1995): 259–73. doi:10.1006/jcss.1995.1022.</ref> предназначен для определения [[Связность в графах|рёберной связности]] графов. Время работы алгоритма <math>O(k m \ln (n^2/m))</math> для ориентированного и <math>O(m + k^2 n \ln (n/k))</math> для неориентированного графа, где <math>k</math> – рёберная связность. Проверка свойства <math>k</math>-связности тем же алгоритмом может быть выполнена за время <math>O(m + n \ln n)</math>.
 
'''Алгоритм Габова'''<ref>Gabow, H N. “A Matroid Approach to Finding Edge Connectivity and Packing Arborescences.” Journal of Computer and System Sciences 50, no. 2 (April 1995): 259–73. doi:10.1006/jcss.1995.1022.</ref> предназначен для определения [[Связность в графах|рёберной связности]] графов. Время работы алгоритма <math>O(k m \ln (n^2/m))</math> для ориентированного и <math>O(m + k^2 n \ln (n/k))</math> для неориентированного графа, где <math>k</math> – рёберная связность. Проверка свойства <math>k</math>-связности тем же алгоритмом может быть выполнена за время <math>O(m + n \ln n)</math>.
  
=== Математическое описание ===
+
=== Математическое описание алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===
=== Описание схемы реализации последовательного алгоритма ===
+
=== Схема реализации последовательного алгоритма ===
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===
  
Строка 13: Строка 13:
  
 
=== Информационный граф ===
 
=== Информационный граф ===
=== Описание ресурса параллелизма алгоритма ===
+
=== Ресурс параллелизма алгоритма ===
=== Описание входных и выходных данных ===
+
=== Входные и выходные данные алгоритма ===
=== Свойства алгоритма===
+
=== Свойства алгоритма ===
== Программная реализация алгоритмов ==
+
 
 +
== Программная реализация алгоритма ==
 
=== Особенности реализации последовательного алгоритма ===
 
=== Особенности реализации последовательного алгоритма ===
=== Описание локальности данных и вычислений ===
+
=== Локальность данных и вычислений ===
=== Возможные способы и особенности реализации параллельного алгоритма ===
+
==== Локальность реализации алгоритма ====
 +
===== Структура обращений в память и качественная оценка локальности =====
 +
===== Количественная оценка локальности =====
 +
=== Возможные способы и особенности параллельной реализации алгоритма ===
 
=== Масштабируемость алгоритма и его реализации ===
 
=== Масштабируемость алгоритма и его реализации ===
 +
==== Масштабируемость алгоритма ====
 +
==== Масштабируемость реализации алгоритма ====
 
=== Динамические характеристики и эффективность реализации алгоритма ===
 
=== Динамические характеристики и эффективность реализации алгоритма ===
 
=== Выводы для классов архитектур ===
 
=== Выводы для классов архитектур ===
 
=== Существующие реализации алгоритма ===
 
=== Существующие реализации алгоритма ===
 +
 
== Литература ==
 
== Литература ==
 +
<references />
  
<references />
+
[[Категория:Начатые статьи]]

Версия 14:30, 29 июля 2015

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Габова[1] предназначен для определения рёберной связности графов. Время работы алгоритма [math]O(k m \ln (n^2/m))[/math] для ориентированного и [math]O(m + k^2 n \ln (n/k))[/math] для неориентированного графа, где [math]k[/math] – рёберная связность. Проверка свойства [math]k[/math]-связности тем же алгоритмом может быть выполнена за время [math]O(m + n \ln n)[/math].

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Время работы алгоритма [math]O(k m \ln (n^2/m))[/math] для ориентированного и [math]O(m + k^2 n \ln (n/k))[/math] для неориентированного графа, где [math]k[/math] – рёберная связность. Проверка свойства [math]k[/math]-связности тем же алгоритмом может быть выполнена за время [math]O(m + n \ln n)[/math].

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Gabow, H N. “A Matroid Approach to Finding Edge Connectivity and Packing Arborescences.” Journal of Computer and System Sciences 50, no. 2 (April 1995): 259–73. doi:10.1006/jcss.1995.1022.