Участник:Konstantin 013: различия между версиями
Строка 8: | Строка 8: | ||
Определим игру двух лиц. Пусть первый игрок имеет в своём распоряжении стратегии <math> x </math> из множества стратегий <math> X </math>, а второй игрок стратегии <math> y </math> из множества стратегий <math> Y </math>. Будем рассматривать ''игру в нормальной форме''. Это означает, что каждый из игроков выбирает стратегию, не зная выбора партнёра. Пару стратегий <math> (x, y) </math> будем называть ''ситуацией''. у первого игрока имеется функция выигрыша <math> F(x, y) </math>, а у второго <math> G(x, y) </math>. определённые на на множестве всех ситуаций <math> X × Y </math>. каждый игрок стремится, по возможности, максимизировать свою функцию выигрыша. Таким образом, игра двух лиц в нормальной форме может быть задаётся набором | Определим игру двух лиц. Пусть первый игрок имеет в своём распоряжении стратегии <math> x </math> из множества стратегий <math> X </math>, а второй игрок стратегии <math> y </math> из множества стратегий <math> Y </math>. Будем рассматривать ''игру в нормальной форме''. Это означает, что каждый из игроков выбирает стратегию, не зная выбора партнёра. Пару стратегий <math> (x, y) </math> будем называть ''ситуацией''. у первого игрока имеется функция выигрыша <math> F(x, y) </math>, а у второго <math> G(x, y) </math>. определённые на на множестве всех ситуаций <math> X × Y </math>. каждый игрок стремится, по возможности, максимизировать свою функцию выигрыша. Таким образом, игра двух лиц в нормальной форме может быть задаётся набором | ||
− | <math> \Gamma \langle X, Y, F(x, y), G(x, y) \rangle </math> | + | <math> \Gamma \langle X, Y, F(x, y), G(x, y) \rangle </math>. Ситуация <math> (x^0, y^0) </math> называется ''равновесием по Нэшу'' игры <math> \Gamma </math> если: |
− | |||
<math> | <math> | ||
\max_{x \in X} F(x, y^0) = F(x^0, y^0) \quad , \quad \max_{y \in Y} F(x^0, y) = G(x^0, y^0) | \max_{x \in X} F(x, y^0) = F(x^0, y^0) \quad , \quad \max_{y \in Y} F(x^0, y) = G(x^0, y^0) |
Версия 11:56, 16 октября 2017
Основные авторы описания: К.В.Телегин
Содержание
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Данный алгоритм находит равновесие Нэша в игре двух лиц с конечным числом стратегий
1.2 Математическое описание алгоритма
Определим игру двух лиц. Пусть первый игрок имеет в своём распоряжении стратегии [math] x [/math] из множества стратегий [math] X [/math], а второй игрок стратегии [math] y [/math] из множества стратегий [math] Y [/math]. Будем рассматривать игру в нормальной форме. Это означает, что каждый из игроков выбирает стратегию, не зная выбора партнёра. Пару стратегий [math] (x, y) [/math] будем называть ситуацией. у первого игрока имеется функция выигрыша [math] F(x, y) [/math], а у второго [math] G(x, y) [/math]. определённые на на множестве всех ситуаций [math] X × Y [/math]. каждый игрок стремится, по возможности, максимизировать свою функцию выигрыша. Таким образом, игра двух лиц в нормальной форме может быть задаётся набором [math] \Gamma \langle X, Y, F(x, y), G(x, y) \rangle [/math]. Ситуация [math] (x^0, y^0) [/math] называется равновесием по Нэшу игры [math] \Gamma [/math] если: [math] \max_{x \in X} F(x, y^0) = F(x^0, y^0) \quad , \quad \max_{y \in Y} F(x^0, y) = G(x^0, y^0) [/math]
Иными словами, каждому из игроков невыгодно отколняться от ситуации равновесия.[1]
В данной статье мы рассмотрим нахождение ситуаций равновесий Нэша в случае, когда [math] X, Y [/math] - конечные множества. тогда можно считать, что [math] X = [1, ..., n], Y = [1, ..., m] [/math], а [math] F, G [/math] - являются матрицами [math] R^{n × m} [/math]
1.3 Вычислительное ядро алгоритма
Сначала будет естественно для каждого столбца матрицы [math] F [/math] найти максимум в нём и для каждой строки матрицы [math] G [/math] найти максимум в ней. Т.е. мы ищем для каждого из [math] m [/math] векторов [math] R^n [/math] мы ищем максимум и для каждого из [math] n [/math] векторов [math] R^m [/math] мы ищем максимум. После этого для каждой ситуации [math] (x^0, y^0) [/math] несложно понять, является ли она равновесием Нэша: нужно просто проверить, что [math] F(x^0, y^0) [/math] - максимальный элемент в [math] y^0 [/math]-м столбце матрицы [math] F [/math] и [math] G(x^0, y^0) [/math] - максимальный элемент в [math] x^0 [/math]-ой строке матрицы [math] G [/math].
2 Программная реализация алгоритма
3 Литература
- ↑ Васин А.А., Морозов В.В. "Введение в теорию игр с приложениями в экономике"(учебное пособие). - М.: 2003. - 278 с. Pages 91-92