Участник:Сорокин Александр/Метод сопряженных градиентов (Решение СЛАУ): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 11: Строка 11:
 
Метод градиентного спуска основан на стратегии движения в строну, противоположную возрастанию функционала. Оптимальным направлением в этом случае будет антиградиент <math> -\bigtriangledown \phi (x) </math> и двигаться по нему нужно будет до тех пор, пока функционал убывает. <br>
 
Метод градиентного спуска основан на стратегии движения в строну, противоположную возрастанию функционала. Оптимальным направлением в этом случае будет антиградиент <math> -\bigtriangledown \phi (x) </math> и двигаться по нему нужно будет до тех пор, пока функционал убывает. <br>
 
Таким образом можно построить метод: <math> x_{i+1} = x_{i} + \alpha_i p_i </math>, где <math> p_i </math> - направление движения, а <math> \alpha_i </math> - величина шага.
 
Таким образом можно построить метод: <math> x_{i+1} = x_{i} + \alpha_i p_i </math>, где <math> p_i </math> - направление движения, а <math> \alpha_i </math> - величина шага.
Из рассуждений выше понятно что оптимальным является направление <math> p_i = - \bigtriangledown \phi (x_{i}) </math>. Величина <math> \alpha_i </math> выбирается из соображений <math> \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) </math>. Аналитическая формула <math> \alpha_i = \frac{\bigtriangledown\phi_(x_i)^T \bigtriangledown\phi_(x_i)}{\bigtriangledown\phi_(x_i)^T A \bigtriangledown\phi_(x_i)} </math>.
+
Из рассуждений выше понятно что оптимальным является направление <math> p_i = - \bigtriangledown \phi (x_{i}) </math>. Величина <math> \alpha_i </math> выбирается из соображений <math> \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) </math>. Аналитическая формула <math> \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} </math>.
  
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===

Версия 17:10, 22 октября 2017

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей, является итерационным методом Крыловского типа. Основная идея метода заключается в том, чтобы минимизировать на подпространствах Крылова А-норму ошибки.

1.2 Математическое описание алгоритма

Пусть необходимо найти решение системы уравнений [math] Ax = b [/math], где [math] A^* = A \gt 0 [/math].
Рассмотрим функционал [math] \phi (x) = \frac{1}{2}x^T A x - x^T b [/math].
Если [math] x^* [/math] это решение задачи минимизации данного функционала, то в этой точке градиент [math] \bigtriangledown \phi (x^*) = Ax^* - b [/math] должен быть равен нулю. Таким образом, минимизируя функционал [math] \phi (x) [/math] мы получим решение исходной системы.

1.2.1 Метод градиентного спуска

Как известно, градиент [math] \bigtriangledown \phi (x) [/math] является направлением наибольшего роста функции.
Метод градиентного спуска основан на стратегии движения в строну, противоположную возрастанию функционала. Оптимальным направлением в этом случае будет антиградиент [math] -\bigtriangledown \phi (x) [/math] и двигаться по нему нужно будет до тех пор, пока функционал убывает.
Таким образом можно построить метод: [math] x_{i+1} = x_{i} + \alpha_i p_i [/math], где [math] p_i [/math] - направление движения, а [math] \alpha_i [/math] - величина шага. Из рассуждений выше понятно что оптимальным является направление [math] p_i = - \bigtriangledown \phi (x_{i}) [/math]. Величина [math] \alpha_i [/math] выбирается из соображений [math] \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) [/math]. Аналитическая формула [math] \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} [/math].

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература