Участник:NataliaPolienko/Блочное умножение матриц по методу Кеннона: различия между версиями
(Новая страница: «== Свойства и структура алгоритма == === Общее описание алгоритма === Одной из основных опер…») |
|||
Строка 45: | Строка 45: | ||
=== Вычислительное ядро алгоритма === | === Вычислительное ядро алгоритма === | ||
+ | |||
+ | Вычислительное ядро перемножения матриц(квадратных) методом Кеннона можно составить из множественных вычислений умножения блоков матрицы <math>A</math> на блоки матрицы <math>B</math>: | ||
+ | |||
+ | :<math>\sum_{k = 1}^{n} a_{ik} b_{kj}</math> | ||
=== Макроструктура алгоритма === | === Макроструктура алгоритма === |
Версия 22:27, 23 октября 2017
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Одной из основных операций над матрицами является их перемножение. Данная операция широко применяется в большом количестве разных методов. Здесь мы рассмотрим умножение [math]C = AB[/math] квадратных матриц с помощью алгоритма Кеннона. Его суть заключается в том, что матрицы разбиваются на блоки, представляющие собой подматрицы исходных матриц. В следствии чего в качестве базовой подзадачи можно выбрать вычисления, связанные с определением одного из блоков результирующей матрицы [math]C[/math] [1].
1.2 Математическое описание алгоритма
Исходные данные: матрица [math]A[/math] размера [math]n \times n[/math], матрица [math]B[/math] размера [math]n \times n[/math].
Вычисляемые данные: матрица [math]C[/math] размера [math]n \times n[/math].
Исходные и результирующая матрицы представляются в виде наборов блоков. Операцию матричного умножения матриц [math]A[/math] и [math]B[/math] в блочном виде можно представить следующим образом [2]: [math] \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1k} \\ B_{21} & B_{22} & \cdots & B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kk} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1k} \\ C_{21} & C_{22} & \cdots & C_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k1} & C_{k2} & \cdots & C_{kk} \end{bmatrix}, [/math]
где каждый блок [math]C_{ij}[/math] матрицы [math]C[/math] определяется в соответствии с выражением:
- [math] \begin{align} C_{ij} = \sum_{l = 1}^{k} A_{il} B_{lj}, \quad i \in [1, k], \quad j \in [1, k]. \end{align} [/math]
Полученные блоки [math]C_{ij}[/math] являются независимыми.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро перемножения матриц(квадратных) методом Кеннона можно составить из множественных вычислений умножения блоков матрицы [math]A[/math] на блоки матрицы [math]B[/math]:
- [math]\sum_{k = 1}^{n} a_{ik} b_{kj}[/math]