Участник:Kst179/Metropolis light transport: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 19: Строка 19:
  
 
== Математическое описание алгоритма ==
 
== Математическое описание алгоритма ==
Для семплирования путей из вообще говоря неизвестного нам распределения <math>p(\overline{x})</math> используется метод '''MCMC'''. Построим следующую марковскую цепь: введем некоторую вероятность <math>K(\overline{y}|\overline{x})</math> перехода <math>\overline{x} \rightarrow \overline{y}</math>. Выберем произвольный путь <math>\overline{x_0}</math> и случайным блужданием будем переходить от <math>\overline{x_{i-1}}</math> к <math>\overline{x_i}</math>. Пусть <math>\overline{x_0}</math> распределено с плотностью вероятности <math>p_0(\overline{x})</math>, тогда определим итеративно:<math>p_i(\overline{x}) = \int_{\Omega} K(\overline{x}|\overline{y})p_{i-1}(\overline{y})d\overline{y}</math>.
+
Для семплирования путей из вообще говоря неизвестного нам распределения <math>p(\overline{x})</math> используется метод '''MCMC'''. Построим следующую марковскую цепь: введем некоторую вероятность <math>K(\overline{y}|\overline{x})</math> перехода <math>\overline{x} \rightarrow \overline{y}</math>. Выберем произвольный путь <math>\overline{x_0}</math> и случайным блужданием будем переходить от <math>\overline{x_{i-1}}</math> к <math>\overline{x_i}</math>. Пусть <math>\overline{x_0}</math> распределено с плотностью вероятности <math>p_0(\overline{x})</math>, далее определим итеративно:<math>p_i(\overline{x}) = \int_{\Omega} K(\overline{x}|\overline{y})p_{i-1}(\overline{y})d\overline{y}</math>.
  
 
== Вычислительное ядро алгоритма ==
 
== Вычислительное ядро алгоритма ==

Версия 23:34, 23 октября 2017

Metropolis light transport — это алгоритм, применяющий один из вариантов метода Монте Карло — метод Метрополиса-Гастинга, Монте Карло на Марковских цепях (Metropolis-Hastings, Markov chain Monte Carlo, MCMC), для генерации изображений при помощи физического описания трехмерных сцен. Алгоритм используется в компьютерной графике, решает задачу глобального освещения (точное моделирование световых эффектов). Отличается от классических методов, таких как Bidirectional path tracing скоростью работы и точностью моделирования (возвращает несмещенное значение).


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Основной объект с которыми работает трассировщик лучей это пути от источников света до камеры. Путь это ломанная, каждое звено которой имитирует направление движения фотона, ломанная начинается в источнике света, изменяет направление при попадании на какую либо поверхность, а последнее звено должно заканчиваться в камере. Обозначим путь как [math]\overline{x} = x_1, x_2, \dots, x_k[/math], где [math]k\gt 1, x_i[/math] — координата на поверхности некоторого объекта от которого отражается луч). Для каждого пути введем некоторую функцию [math]f(\overline{x})[/math], обозначающую яркость, с которой этот луч освещает пиксель матрицы камеры.

Пример трассировки лучей

Обычные методы трассировки лучей генерируют очень много путей и потом аггрегируют значение яркости по каждому пикселю. Это может быть очень долго, из за того что много компьютерного времени уходит на генерацию лучей с малой яркостью последующий вклад которых в результатирующее изображение мал (пример — две комнаты, разделенные слегка приоткрытой дверью в одной находится источник света, в другой — камера, тогда большинство независимо сгенерированных путей будет проходить сквозь стену, а значит иметь нулевую яркость).

В MLT путь считается случайной величиной, с плотностью вероятности [math]p(\overline{x}) = \frac{1}{b}f(\overline{x}), b=const[/math], а генерация путей происходит согласно этому распределению. Тогда получается что более весомых путей мы генерируем больше, а пути проходящие через стены или на которых теряется слишком много яркости мы практически не рассматриваем. Также если генерировать пути согласно вышеописанному распределению то выражение для подсчета окончательного изображения [math]m_j = \int _{\Omega} w_j(\overline{x})f(\overline{x})d\overline{x}[/math], (где [math]m_j[/math] — значение [math]j[/math]-го пикселя, [math]\Omega[/math] — пространство всевозможных путей, [math]w_j(\overline{x})[/math] — индикатор того, что [math]\overline{x}[/math] попадает в [math]j[/math]-й пиксель) можно заменить на следующую несмещенную оценку:

[math]m_j = \int _{\Omega} w_j(\overline{x})f(\overline{x})d\overline{x} = \int _{\Omega} w_j(\overline{x})\frac{f(\overline{x})}{p(\overline{x})} p(\overline{x})d\overline{x} = \mathbb{E} w_j(\overline{x})\frac{f(\overline{x})}{p(\overline{x})} \approx \frac{1}{N} \sum _{i=0} ^{N} w_j(\overline{x_i})\frac{f(\overline{x_i})}{p(\overline{x_i})} = \frac{b}{N} \sum _{i=0} ^{N} w_j(\overline{x_i})[/math].

То есть после семплирования путей [math]\overline{x_1}, \overline{x_2}, \dots, \overline{x_N}[/math] получаем что яркость j-го пикселя пропорциональна количеству приходящих в этот пиксель лучей а от их вида никак не зависит (но для этого необходимо чтобы пути строго соответствовали своему распределению).

1.2 Математическое описание алгоритма

Для семплирования путей из вообще говоря неизвестного нам распределения [math]p(\overline{x})[/math] используется метод MCMC. Построим следующую марковскую цепь: введем некоторую вероятность [math]K(\overline{y}|\overline{x})[/math] перехода [math]\overline{x} \rightarrow \overline{y}[/math]. Выберем произвольный путь [math]\overline{x_0}[/math] и случайным блужданием будем переходить от [math]\overline{x_{i-1}}[/math] к [math]\overline{x_i}[/math]. Пусть [math]\overline{x_0}[/math] распределено с плотностью вероятности [math]p_0(\overline{x})[/math], далее определим итеративно:[math]p_i(\overline{x}) = \int_{\Omega} K(\overline{x}|\overline{y})p_{i-1}(\overline{y})d\overline{y}[/math].

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

2 Программная реализация алгоритма

3 Литература