Метод Хаусхолдера (отражений) QR-разложения матрицы: различия между версиями
Перейти к навигации
Перейти к поиску
[досмотренная версия] | [досмотренная версия] |
Frolov (обсуждение | вклад) м |
Frolov (обсуждение | вклад) м (→Литература) |
||
Строка 8: | Строка 8: | ||
= Литература = | = Литература = | ||
+ | |||
+ | [[Категория:Законченные статьи без перевода на английский язык]] | ||
+ | [[Категория:Законченные статьи]] |
Версия 15:46, 15 февраля 2018
Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде [math]A=QR[/math] ([math]Q[/math] - унитарная, [math]R[/math] — правая треугольная матрица)[1]. При этом матрица [math]Q[/math] хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2].
Матрица отражений (Хаусхолдера) - матрица вида [math]U=E-2ww^*[/math], где [math]w[/math] - вектор, удовлетворяющий равенству [math]w^{*}w=1[/math]. Является одновременно унитарной ([math]U^{*}U=E[/math]) и эрмитовой ([math]U^{*}=U[/math]), поэтому обратна самой себе ([math]U^{-1}=U[/math]).
Кроме классического точечного варианта, метод имеет много других, например, блочный.