Приложение 3: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(Полностью удалено содержимое страницы)
Строка 1: Строка 1:
 +
= Обратная подстановка метода Гаусса (вещественный вариант) =
  
 +
== Свойства и структура алгоритма ==
 +
 +
=== Общее описание алгоритма ===
 +
 +
'''Обратная подстановка''' - решение ''системы линейных алгебраических уравнений'' ('''СЛАУ''') <math>Ux = y</math> с верхней треугольной матрицей <math>U</math>. Матрица <math>U</math> может быть одной из составляющих матрицы <math>A</math> в каких-либо разложениях и получается либо из <math>LU</math>-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, [[Метод Холецкого (квадратного корня), точечный вещественный вариант|разложение Холецкого]] и др.), либо из других (например из QR-разложения).  В силу треугольности <math>U</math> решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.
 +
 +
В<ref>В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. - М.: Наука, 1984.</ref> методом '''обратной подстановки''' назван также и метод решения СЛАУ с ''нижней треугольной матрицей''. Там же отмечено, что в литературе иногда под ''обратной подстановкой'' имеют в виду, как и здесь, только решения СЛАУ с ''верхней треугольной матрицей'', а решение ''нижних'' треугольных систем называют [[Прямая подстановка (вещественный вариант)|прямой подстановкой]]. Такой же системы названий будем придерживаться и здесь, во избежание одноимённого названия разных алгоритмов. Кроме того, '''обратная подстановка''', представленная здесь, одновременно может быть частью '''метода Гаусса для решения СЛАУ''', а именно - его '''обратным ходом''', чего нельзя сказать про [[Прямая подстановка (вещественный вариант)|прямую подстановку]].
 +
 +
Существует метод со сходным названием - [[Обратная подстановка с нормировкой]]. При том, что он решает, по существу, ту же задачу, что и простая '''обратная подстановка''', его схема несколько сложнее. Это связано со специальными мерами по уменьшению влияния ошибок округления на результат. [[Обратная подстановка с нормировкой]] на данной странице не рассматривается.
 +
 +
=== Математическое описание алгоритма ===
 +
 +
Исходные данные: верхняя треугольная матрица <math>U</math> (элементы <math>u_{ij}</math>), вектор правой части <math>y</math> (элементы <math>y_{i}</math>).
 +
 +
Вычисляемые данные: вектор решения <math>x</math> (элементы <math>x_{i}</math>).
 +
 +
Формулы метода:
 +
:<math>
 +
\begin{align}
 +
x_{n} & = y_{n}/u_{nn} \\
 +
x_{i} & = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}, \quad i \in [1, n - 1].
 +
\end{align}
 +
</math>
 +
 +
Существует также блочная версия метода, однако в данном описании разобран только точечный метод.
 +
 +
=== Вычислительное ядро алгоритма ===
 +
 +
Вычислительное ядро обратной подстановки можно составить из множественных (всего их <math>n-1</math>) вычислений скалярных произведений подстрок матрицы <math>U</math> на уже вычисленную часть вектора <math>x</math>:
 +
 +
:<math> \sum_{j = i+1}^{n} u_{ij} x_{j} </math>
 +
 +
в режиме накопления или без него, в зависимости от требований задачи, с их последующим вычитанием из компоненты вектора <math>y</math> и деления на диагональный элемент матрицы <math>U</math>. В отечественных реализациях, даже в последовательных, упомянутый способ представления не используется. Дело в том, что даже в этих реализациях метода вычисление сумм типа
 +
 +
:<math> y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} </math>
 +
 +
в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому следует считать вычислительным ядром метода не вычисления скалярных произведений, а вычисления выражений
 +
 +
:<math> y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} </math>
 +
 +
в режиме накопления или без него, в зависимости от требований задачи, плюс деления результатов этих вычислений на диагональные элементы матрицы.
 +
 +
=== Макроструктура алгоритма ===
 +
 +
Как уже записано в [[#Вычислительное ядро алгоритма|описании ядра алгоритма]], основную часть метода обратной подстановки составляют множественные (всего <math>n-1</math>) вычисления сумм
 +
 +
:<math>y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} </math>
 +
 +
в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.
 +
 +
=== Схема реализации последовательного алгоритма ===
 +
 +
Последовательность исполнения такова:
 +
 +
1. <math>x_{n} = y_{n}/u_{nn}</math>
 +
 +
Далее для всех <math>i</math> от <math>n-1</math> до <math>1</math> ''по убыванию'' выполняются
 +
 +
2. <math>x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}</math>
 +
 +
Особо отметим, что вычисления сумм вида <math>y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}</math> производят в режиме накопления вычитанием из <math>y_{i}</math> произведений <math>u_{ij} x_{j}</math> для <math>j</math> от <math>n</math> до <math>i + 1</math>, '''''c убыванием''''' <math>j</math>. '''''Другие порядки выполнения суммирования приводят к резкому ухудшению параллельных свойств алгоритма''''', хотя, к сожалению, остаются кое-где в литературе и пакетах программ. В качестве примера такого порядка можно привести фрагмент программы из<ref>Дж.Форсайт, К.Моллер. Численное решение систем линейных алгебраических уравнений. - М.:Мир, 1969.</ref>, где обратная подстановка является обратным ходом в методе Гаусса, а возрастание индекса суммирования связано, в основном, с ограничениями используемого авторами книги старого диалекта Фортрана.
 +
 +
=== Последовательная сложность алгоритма ===
 +
 +
Для обратной подстановки в случае решения линейной системы с верхней треугольной матрицей порядка <math>n</math>  в последовательном (наиболее быстром) варианте требуется:
 +
 +
* <math>n</math> делений,
 +
* <math>\frac{n^2-n}{2}</math> сложений (вычитаний),
 +
* <math>\frac{n^2-n}{2}</math> умножений.
 +
Умножения и сложения (вычитания) — ''основная часть алгоритма''.
 +
 +
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности (или использования функции вроде DPROD в Фортране).
 +
 +
При классификации по последовательной сложности, таким образом, метод обратной подстановки относится к алгоритмам ''со сложностью'' <math>O(n^2)</math>.
 +
 +
=== Информационный граф ===
 +
 +
Опишем [[глоссарий#Граф алгоритма|граф алгоритма]] как аналитически, так и в виде рисунка.
 +
 +
Граф алгоритма обратной подстановки состоит из двух групп вершин, расположенных в целочисленных узлах двух областей разной размерности.
 +
 +
[[Файл:DirectU.png|450px|thumb|left|Рис. 1. Обратная подстановка]]
 +
 +
'''Первая''' группа вершин расположена в одномерной области, соответствующая ей операция вычисляет функцию деления.
 +
Естественно введённая единственная координата каждой из вершин <math>i</math> меняется в диапазоне от <math>n</math> до <math>1</math>, принимая все целочисленные значения.
 +
 +
Делимое в этой операции:
 +
 +
* при <math>i = n</math> — элемент ''входных данных'', а именно  <math>y_{n}</math>;
 +
* при <math>i < n</math> — результат срабатывания операции, соответствующей вершине из второй группы, с координатами <math>i</math>, <math>i+1</math>.
 +
 +
Делитель для этой операции - элемент ''входных данных'', а именно  <math>u_{nn}</math>.
 +
 +
Результат срабатывания операции является ''выходным данным'' <math>x_{i}</math>.
 +
 +
'''Вторая''' группа вершин расположена в двумерной области, соответствующая ей операция  <math>a-bc</math>.
 +
Естественно введённые координаты области таковы:
 +
* <math>i</math> — меняется в диапазоне от <math>n-1</math> до <math>1</math>, принимая все целочисленные значения;
 +
* <math>j</math> — меняется в диапазоне от <math>n</math> до <math>i+1</math>, принимая все целочисленные значения.
 +
 +
Аргументы операции следующие:
 +
*<math>a</math>:
 +
** при <math>j = n</math> элемент ''входных данных'' <math>y_{i}</math>;
 +
** при <math>j < n</math> — результат срабатывания операции, соответствующей вершине из второй группы, с координатами <math>i, j+1</math>;
 +
*<math>b</math> — элемент ''входных данных'', а именно  <math>u_{ij}</math>;
 +
*<math>c</math> — результат срабатывания операции, соответствующей вершине из первой группы, с координатой <math>j</math>.
 +
 +
Результат срабатывания операции является ''промежуточным данным'' алгоритма.
 +
 +
Описанный граф можно посмотреть на рис. 1, выполненном для случая <math>n = 5</math>. Здесь вершины первой группы обозначены жёлтым цветом и знаком деления, вершины второй — зелёным цветом и буквой f. Изображена подача только входных данных из вектора <math>y</math>, подача элементов матрицы <math>U</math>, идущая во все вершины, на рисунке не представлена.
 +
 +
=== Ресурс параллелизма алгоритма ===
 +
 +
Для обратной подстановки в случае решения линейной системы с верхней треугольной матрицей порядка <math>n</math> в параллельном варианте требуется последовательно выполнить следующие ярусы:
 +
* <math>n</math> ярусов делений (в каждом из ярусов одно деление),
 +
* по <math>n - 1</math> ярусов умножений и сложений/вычитаний (в каждом из ярусов — линейное количество операций, от <math>1</math> до <math>n-1</math>.
 +
 +
Таким образом, в параллельном варианте, в отличие от последовательного, вычисления делений будут определять довольно значительную долю требуемого времени. При реализации на конкретных архитектурах наличие в отдельных ярусах [[глоссарий#Ярусно-параллельная форма графа алгоритма|ЯПФ]] отдельных делений может породить и другие проблемы. Например, при реализации метода обратной подстановки на ПЛИСах остальные вычисления (умножения и сложения/вычитания) могут быть конвейеризованы, что даёт экономию и по ресурсам на программируемых платах; деления из-за их изолированности приведут к занятию ресурсов на платах, которые будут простаивать большую часть времени.
 +
 +
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности, а в параллельном варианте это означает, что практически все промежуточные вычисления для выполнения алгоритма в режиме накопления должны быть двойной точности. В отличие от последовательного варианта это означает некоторое увеличение требуемой памяти.
 +
 +
При классификации по высоте ЯПФ, таким образом, метод обратной подстановки относится к алгоритмам ''с линейной сложностью''. При классификации по ширине ЯПФ его сложность также будет ''линейной''.
 +
 +
=== Входные и выходные данные алгоритма ===
 +
 +
'''Входные данные''': верхняя треугольная матрица <math>U</math> (элементы <math>u_{ij}</math>), вектор правой части <math>y</math> (элементы <math>y_{i}</math>).
 +
 +
'''Объём входных данных''': :<math>\frac{n (n + 3)}{2}</math> (в силу треугольности достаточно хранить только ненулевые элементы матрицы <math>U</math>).
 +
 +
'''Выходные данные''': вектор решения <math>x</math> (элементы <math>x_{i}</math>).
 +
 +
'''Объём выходных данных''': :<math>n~.</math>
 +
 +
=== Свойства алгоритма ===
 +
 +
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является ''линейным'' (отношение квадратической к линейной).
 +
 +
При этом вычислительная мощность алгоритма обратной подстановки, как отношение числа операций к суммарному объему входных и выходных данных – всего лишь ''константа''.
 +
 +
При этом алгоритм обратной подстановки полностью детерминирован. Использование другого порядка выполнения ассоциативных операций в данной версии нами не рассматривается, поскольку в корне меняет структуру алгоритма и меняет сложность с линейной на квадратичную.
 +
 +
Наличие линейного количества ярусов ЯПФ, состоящих из одного-единственного деления, потенциально замедляющее параллельные реализации алгоритма, является его характерным "узким местом", особенно в сравнении со схожей по решаемой математической задаче [[Прямая подстановка (вещественный вариант)|прямой подстановке]], где диагональные элементы единичны. В связи с этим для решения СЛАУ предпочтительны такие разложения, содержащие треугольные матрицы, где в треугольных матрицах диагональные элементы единичны. В тех же случаях, когда получаются неособенные треугольные матрицы, их желательно предварительно, до решения СЛАУ с ними, преобразовать в произведение диагональной и треугольной с единичными диагональными элементами.
 +
 +
У алгоритма обратной подстановки существует несколько блочных вариантов. Граф некоторых из них совпадает с графом точечного варианта, различия связаны в основном с порядком прохождения основных циклов алгоритма, а именно - с их развёртыванием и перестановкой. Эти приёмы могут помочь в оптимизации обменов на конкретных вычислительных системах.
 +
 +
== Литература ==
 +
<references />

Версия 11:08, 17 сентября 2015

1 Обратная подстановка метода Гаусса (вещественный вариант)

1.1 Свойства и структура алгоритма

1.1.1 Общее описание алгоритма

Обратная подстановка - решение системы линейных алгебраических уравнений (СЛАУ) [math]Ux = y[/math] с верхней треугольной матрицей [math]U[/math]. Матрица [math]U[/math] может быть одной из составляющих матрицы [math]A[/math] в каких-либо разложениях и получается либо из [math]LU[/math]-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, разложение Холецкого и др.), либо из других (например из QR-разложения). В силу треугольности [math]U[/math] решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.

В[1] методом обратной подстановки назван также и метод решения СЛАУ с нижней треугольной матрицей. Там же отмечено, что в литературе иногда под обратной подстановкой имеют в виду, как и здесь, только решения СЛАУ с верхней треугольной матрицей, а решение нижних треугольных систем называют прямой подстановкой. Такой же системы названий будем придерживаться и здесь, во избежание одноимённого названия разных алгоритмов. Кроме того, обратная подстановка, представленная здесь, одновременно может быть частью метода Гаусса для решения СЛАУ, а именно - его обратным ходом, чего нельзя сказать про прямую подстановку.

Существует метод со сходным названием - Обратная подстановка с нормировкой. При том, что он решает, по существу, ту же задачу, что и простая обратная подстановка, его схема несколько сложнее. Это связано со специальными мерами по уменьшению влияния ошибок округления на результат. Обратная подстановка с нормировкой на данной странице не рассматривается.

1.1.2 Математическое описание алгоритма

Исходные данные: верхняя треугольная матрица [math]U[/math] (элементы [math]u_{ij}[/math]), вектор правой части [math]y[/math] (элементы [math]y_{i}[/math]).

Вычисляемые данные: вектор решения [math]x[/math] (элементы [math]x_{i}[/math]).

Формулы метода:

[math] \begin{align} x_{n} & = y_{n}/u_{nn} \\ x_{i} & = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}, \quad i \in [1, n - 1]. \end{align} [/math]

Существует также блочная версия метода, однако в данном описании разобран только точечный метод.

1.1.3 Вычислительное ядро алгоритма

Вычислительное ядро обратной подстановки можно составить из множественных (всего их [math]n-1[/math]) вычислений скалярных произведений подстрок матрицы [math]U[/math] на уже вычисленную часть вектора [math]x[/math]:

[math] \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в режиме накопления или без него, в зависимости от требований задачи, с их последующим вычитанием из компоненты вектора [math]y[/math] и деления на диагональный элемент матрицы [math]U[/math]. В отечественных реализациях, даже в последовательных, упомянутый способ представления не используется. Дело в том, что даже в этих реализациях метода вычисление сумм типа

[math] y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому следует считать вычислительным ядром метода не вычисления скалярных произведений, а вычисления выражений

[math] y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в режиме накопления или без него, в зависимости от требований задачи, плюс деления результатов этих вычислений на диагональные элементы матрицы.

1.1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода обратной подстановки составляют множественные (всего [math]n-1[/math]) вычисления сумм

[math]y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.

1.1.5 Схема реализации последовательного алгоритма

Последовательность исполнения такова:

1. [math]x_{n} = y_{n}/u_{nn}[/math]

Далее для всех [math]i[/math] от [math]n-1[/math] до [math]1[/math] по убыванию выполняются

2. [math]x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}[/math]

Особо отметим, что вычисления сумм вида [math]y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}[/math] производят в режиме накопления вычитанием из [math]y_{i}[/math] произведений [math]u_{ij} x_{j}[/math] для [math]j[/math] от [math]n[/math] до [math]i + 1[/math], c убыванием [math]j[/math]. Другие порядки выполнения суммирования приводят к резкому ухудшению параллельных свойств алгоритма, хотя, к сожалению, остаются кое-где в литературе и пакетах программ. В качестве примера такого порядка можно привести фрагмент программы из[2], где обратная подстановка является обратным ходом в методе Гаусса, а возрастание индекса суммирования связано, в основном, с ограничениями используемого авторами книги старого диалекта Фортрана.

1.1.6 Последовательная сложность алгоритма

Для обратной подстановки в случае решения линейной системы с верхней треугольной матрицей порядка [math]n[/math] в последовательном (наиболее быстром) варианте требуется:

  • [math]n[/math] делений,
  • [math]\frac{n^2-n}{2}[/math] сложений (вычитаний),
  • [math]\frac{n^2-n}{2}[/math] умножений.

Умножения и сложения (вычитания) — основная часть алгоритма.

При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности (или использования функции вроде DPROD в Фортране).

При классификации по последовательной сложности, таким образом, метод обратной подстановки относится к алгоритмам со сложностью [math]O(n^2)[/math].

1.1.7 Информационный граф

Опишем граф алгоритма как аналитически, так и в виде рисунка.

Граф алгоритма обратной подстановки состоит из двух групп вершин, расположенных в целочисленных узлах двух областей разной размерности.

Рис. 1. Обратная подстановка

Первая группа вершин расположена в одномерной области, соответствующая ей операция вычисляет функцию деления. Естественно введённая единственная координата каждой из вершин [math]i[/math] меняется в диапазоне от [math]n[/math] до [math]1[/math], принимая все целочисленные значения.

Делимое в этой операции:

  • при [math]i = n[/math] — элемент входных данных, а именно [math]y_{n}[/math];
  • при [math]i \lt n[/math] — результат срабатывания операции, соответствующей вершине из второй группы, с координатами [math]i[/math], [math]i+1[/math].

Делитель для этой операции - элемент входных данных, а именно [math]u_{nn}[/math].

Результат срабатывания операции является выходным данным [math]x_{i}[/math].

Вторая группа вершин расположена в двумерной области, соответствующая ей операция [math]a-bc[/math]. Естественно введённые координаты области таковы:

  • [math]i[/math] — меняется в диапазоне от [math]n-1[/math] до [math]1[/math], принимая все целочисленные значения;
  • [math]j[/math] — меняется в диапазоне от [math]n[/math] до [math]i+1[/math], принимая все целочисленные значения.

Аргументы операции следующие:

  • [math]a[/math]:
    • при [math]j = n[/math] элемент входных данных [math]y_{i}[/math];
    • при [math]j \lt n[/math] — результат срабатывания операции, соответствующей вершине из второй группы, с координатами [math]i, j+1[/math];
  • [math]b[/math] — элемент входных данных, а именно [math]u_{ij}[/math];
  • [math]c[/math] — результат срабатывания операции, соответствующей вершине из первой группы, с координатой [math]j[/math].

Результат срабатывания операции является промежуточным данным алгоритма.

Описанный граф можно посмотреть на рис. 1, выполненном для случая [math]n = 5[/math]. Здесь вершины первой группы обозначены жёлтым цветом и знаком деления, вершины второй — зелёным цветом и буквой f. Изображена подача только входных данных из вектора [math]y[/math], подача элементов матрицы [math]U[/math], идущая во все вершины, на рисунке не представлена.

1.1.8 Ресурс параллелизма алгоритма

Для обратной подстановки в случае решения линейной системы с верхней треугольной матрицей порядка [math]n[/math] в параллельном варианте требуется последовательно выполнить следующие ярусы:

  • [math]n[/math] ярусов делений (в каждом из ярусов одно деление),
  • по [math]n - 1[/math] ярусов умножений и сложений/вычитаний (в каждом из ярусов — линейное количество операций, от [math]1[/math] до [math]n-1[/math].

Таким образом, в параллельном варианте, в отличие от последовательного, вычисления делений будут определять довольно значительную долю требуемого времени. При реализации на конкретных архитектурах наличие в отдельных ярусах ЯПФ отдельных делений может породить и другие проблемы. Например, при реализации метода обратной подстановки на ПЛИСах остальные вычисления (умножения и сложения/вычитания) могут быть конвейеризованы, что даёт экономию и по ресурсам на программируемых платах; деления из-за их изолированности приведут к занятию ресурсов на платах, которые будут простаивать большую часть времени.

При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности, а в параллельном варианте это означает, что практически все промежуточные вычисления для выполнения алгоритма в режиме накопления должны быть двойной точности. В отличие от последовательного варианта это означает некоторое увеличение требуемой памяти.

При классификации по высоте ЯПФ, таким образом, метод обратной подстановки относится к алгоритмам с линейной сложностью. При классификации по ширине ЯПФ его сложность также будет линейной.

1.1.9 Входные и выходные данные алгоритма

Входные данные: верхняя треугольная матрица [math]U[/math] (элементы [math]u_{ij}[/math]), вектор правой части [math]y[/math] (элементы [math]y_{i}[/math]).

Объём входных данных: :[math]\frac{n (n + 3)}{2}[/math] (в силу треугольности достаточно хранить только ненулевые элементы матрицы [math]U[/math]).

Выходные данные: вектор решения [math]x[/math] (элементы [math]x_{i}[/math]).

Объём выходных данных: :[math]n~.[/math]

1.1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является линейным (отношение квадратической к линейной).

При этом вычислительная мощность алгоритма обратной подстановки, как отношение числа операций к суммарному объему входных и выходных данных – всего лишь константа.

При этом алгоритм обратной подстановки полностью детерминирован. Использование другого порядка выполнения ассоциативных операций в данной версии нами не рассматривается, поскольку в корне меняет структуру алгоритма и меняет сложность с линейной на квадратичную.

Наличие линейного количества ярусов ЯПФ, состоящих из одного-единственного деления, потенциально замедляющее параллельные реализации алгоритма, является его характерным "узким местом", особенно в сравнении со схожей по решаемой математической задаче прямой подстановке, где диагональные элементы единичны. В связи с этим для решения СЛАУ предпочтительны такие разложения, содержащие треугольные матрицы, где в треугольных матрицах диагональные элементы единичны. В тех же случаях, когда получаются неособенные треугольные матрицы, их желательно предварительно, до решения СЛАУ с ними, преобразовать в произведение диагональной и треугольной с единичными диагональными элементами.

У алгоритма обратной подстановки существует несколько блочных вариантов. Граф некоторых из них совпадает с графом точечного варианта, различия связаны в основном с порядком прохождения основных циклов алгоритма, а именно - с их развёртыванием и перестановкой. Эти приёмы могут помочь в оптимизации обменов на конкретных вычислительных системах.

1.2 Литература

  1. В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. - М.: Наука, 1984.
  2. Дж.Форсайт, К.Моллер. Численное решение систем линейных алгебраических уравнений. - М.:Мир, 1969.