Алгоритм Тарьяна поиска компонент сильной связности: различия между версиями
Перейти к навигации
Перейти к поиску
[выверенная версия] | [выверенная версия] |
ASA (обсуждение | вклад) |
ASA (обсуждение | вклад) |
||
Строка 47: | Строка 47: | ||
[[Категория:Начатые статьи]] | [[Категория:Начатые статьи]] | ||
+ | |||
+ | [[en:Tarjan's strongly connected components algorithm]] |
Версия 16:56, 14 марта 2018
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Тарьяна[1] находит компоненты сильной связности ориентированного графа в процессе поиска в глубину за время [math]O(m)[/math].
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Последовательная сложностью алгоритма Тарьяна – [math]O(m)[/math].
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
Алгоритм основан на поиске в глубину и поэтому возможности его параллелизации сильно ограничены.
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
strong_components
). - Java: WebGraph (класс
StronglyConnectedComponents
). - Java: JGraphT (класс
StrongConnectivityInspector
). - Python: NetworkX (функция
strongly_connected_components
). - Python/C++: NetworKit (класс
networkit.properties.StronglyConnectedComponents
).
3 Литература
- ↑ Tarjan, Robert. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing 1, no. 2 (1972): 146–60.