Алгоритм Форда-Фалкерсона: различия между версиями
[выверенная версия] | [выверенная версия] |
ASA (обсуждение | вклад) |
ASA (обсуждение | вклад) |
||
Строка 84: | Строка 84: | ||
[[Категория:Начатые статьи]] | [[Категория:Начатые статьи]] | ||
+ | |||
+ | [[en:Ford–Fulkerson algorithm]] |
Версия 17:02, 14 марта 2018
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Форда-Фалкерсона[1][2] (с последующими усовершенствованиями Эдмондса-Карпа[3] и Е. А. Диница[4]) предназначен для решения задачи о максимальном потоке в транспортной сети. Время работы алгоритма [math]O(n^2m)[/math] (для алгоритма Диница). В случае целых пропускных способностей, не превосходящих [math]K[/math], сложность [math]O(Km)[/math] (для алгоритма Эдмондса–Карпа).
Алгоритм последовательно улучшает допустимый поток, находя так называемый дополняющий путь и увеличивая поток вдоль этого пути. Варианты алгоритма отличаются способом нахождения дополняющего пути.
- В исходном алгоритме Форда–Фалкерсона способ выбора дополняющего пути не уточнялся.
- В алгоритме Эдмондса-Карпа выбирается кратчайший дополняющий путь, для чего используется поиск в ширину на каждой итерации;
- В алгоритме Диница для выбора кратчайшего пути поддерживается «расслоение» графа, так что поиск в ширину выполняется значительно реже.
1.2 Математическое описание алгоритма
Математическая постановка задачи приведена в статье «Поиск максимального потока в транспортной сети», там же введены используемые обозначения.
Пусть задан некоторый допустимый поток [math]f[/math]. Дополняющим путём называется последовательность рёбер [math]e_0 = (s, v_1), e_1 = (v_1, v_2), \ldots, e_k = (v_k, t)[/math], каждое из которых обладает положительной остаточной пропускной способностью [math]c_f(e_i) = c(e_i) - f(e_i) \gt 0[/math].
Поток останется допустимым, если увеличить его вдоль дополняющего пути на число [math]\delta = \min \{ c(e_i) - f(e_i) \} \gt 0[/math], при этом величина потока возрастёт на то же число [math]\delta[/math]. Для сохранения антисимметричности увеличение потока производится присваиваниями
- [math] f(e_i) \leftarrow f(e_i) + \delta, \quad f(e_i^R) \leftarrow f(e_i^R) - \delta, \quad i = \overline{0, k}. [/math]
Если дополняющего пути не существует, то поток [math]f[/math] является максимальным.
1.3 Вычислительное ядро алгоритма
Вычислительными ядрами, на которые приходится наибольший объём вычислений, являются:
- поиск в ширину;
- увеличение потока вдоль дополняющего пути.
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
В статье Эдмондса–Карпа[3] (теорема 1) доказано, что количество последовательно построенных кратчайших дополнительных путей не превосходит [math]m(n + 1)/2 = O(mn)[/math]. Основными операциями алгоритма являются поиск в ширину сложностью [math]O(m)[/math] и обновление потока вдоль дополняющего пути сложностью [math]O(n)[/math].
В алгоритме Эдмондса–Карпа выполняются следующие операции:
- поиск в ширину и определение кратчайшего пути на каждой итерации, сложность [math]O(m + n)[/math], общая сложность [math]O(m^2n)[/math];
- обновление потока вдоль дополняющего пути, сложность [math]O(n)[/math], общая сложность [math]O(n^2 m)[/math].
Таким образом, общая сложность составляет [math]O(m^2n)[/math].
В алгоритме Диница выполняются следующие операции:
- поиск кратчайшего пути и обновление потока вдоль дополняющего пути на каждой итерации, сложность [math]O(n)[/math], общая сложность [math]O(mn^2)[/math];
- обновление расслоения на каждой итерации, сложность [math]O(1)[/math], общая сложность [math]O(mn)[/math];
- поиск в ширину для построения нового расслоения, сложность [math]O(m)[/math], число построений не более [math]n[/math], общая сложность [math]O(mn)[/math].
Таким образом, общая сложность составляет [math]O(mn^2)[/math].
1.7 Информационный граф
Далее представлен информационный граф алгоритма, демонстрирующий описанные уровни параллелизма. Информационный граф алгоритма — ориентированный граф, состоящий из вершин, соответствующих операциям алгоритма, и направленных дуг, соответствующих передаче данных (результаты одних операций передаются в качестве аргументов другим операциям) между ними.
1.8 Ресурс параллелизма алгоритма
Основной объём вычислений в алгоритме Форда-Фалкерсона приходится на поиск путей от источника к стоку. С этой целью может применяться поиск в ширину, который хорошо распараллеливается. Наилучших результатов можно достичь, если распределить вершины между узлами по слоям примерно одинаковой толщины, так что в каждом слое вершины были бы примерно на одинаковом удалении от источника (такое расслоение также можно найти поиском в ширину).
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
edmonds_karp_max_flow
): алгоритм Эдмондса–Карпа, сложность [math]O(nm^2)[/math] для действительных весов и [math]O(Kmn)[/math] для целых, не превосходящих [math]K[/math]. - Python: NetworkX (функция
edmonds_karp
): алгоритм Эдмондса–Карпа, сложность [math]O(nm^2)[/math]. - Java: JGraphT (класс
EdmondsKarpMaximumFlow
), алгоритм Эдмондса–Карпа, сложность [math]O(nm^2)[/math].
3 Литература
- ↑ Ford, L R, Jr., and D R Fulkerson. “Maximal Flow Through a Network.” Canadian Journal of Mathematics 8 (1956): 399–404. doi:10.4153/CJM-1956-045-5.
- ↑ Ford, L R, Jr., and D R Fulkerson. “A Simple Algorithm for Finding Maximal Network Flows and an Application to the Hitchcock Problem.” Canadian Journal of Mathematics 9 (1957): 210–18.
- ↑ 3,0 3,1 Edmonds, Jack, and Richard M Karp. “Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems.” Journal of the ACM 19, no. 2 (April 1972): 248–64. doi:10.1145/321694.321699.
- ↑ Диниц, Е. А. “Алгоритм решения задачи о максимальном потоке в сети со степенной оценкой.” Доклады АН СССР 194, no. 4 (1970): 754–57.