Обратная подстановка (вещественный вариант): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 44: Строка 44:
  
 
в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.
 
в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.
 +
 +
=== Описание схемы реализации последовательного алгоритма ===
 +
 +
Чтобы понять последовательность исполнения, перепишем формулы метода так:
 +
 +
1. <math>x_{n} = y_{n}/u_{nn}</math>
 +
 +
Далее для всех <math>i</math> от <math>n-1</math> до <math>1</math> по убыванию выполняются
 +
 +
2. <math>x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}</math>
 +
 +
Особо отметим, что вычисления сумм вида <math>y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}</math> производят в режиме накопления вычитанием из <math>y_{i}</math> произведений <math>u_{ij} x_{j}</math> для <math>j</math> от <math>n</math> до <math>i + 1</math>, '''c убыванием''' <math>j</math>. Другие порядки выполнения суммирования приводят к резкому ухудшению параллельных свойств алгоритма, хотя, к сожалению, остаются кое-где в литературе и пакетах программ.

Версия 10:42, 11 сентября 2014

1 Описание свойств и структуры алгоритма

1.1 Словесное описание алгоритма

Обратный ход метода Гаусса - решение СЛАУ Ux = y с правой треугольной матрицей U. Матрица U - одна из составляющих матрицы A и получается либо из LU-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, разложение Холецкого и др.), либо из других разложений. В силу треугольности U решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.

1.2 Математическое описание

Исходные данные: правая треугольная матрица U (элементы u_{ij}), вектор правой части y (элементы y_{i}).

Вычисляемые данные: вектор решения x (элементы x_{i}).

Формулы метода:

\begin{align} x_{n} & = y_{n}/u_{nn} \\ x_{i} & = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}, \quad i \in [1, n - 1]. \end{align}

Существует также блочная версия метода, однако в данном описании разобран только точечный метод.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро обратного хода метода Гаусса можно составить из множественных (всего их n) вычислений скалярных произведений строк матрицы U на уже вычисленную часть вектора x:

\sum_{j = i+1}^{n} u_{ij} x_{j}

в режиме накопления или без него, в зависимости от требований задачи, с их последующим вычитанием из компоненты вектора y и деления на диагональный элемент матрицы U. В отечественных реализациях, даже в последовательных, упомянутый способ представления не используется. Дело в том, что даже в этих реализациях метода вычисление сумм типа

y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}

в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому следует считать вычислительным ядром метода не вычисления скалярных произведений, а вычисления выражений

y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}

в режиме накопления или без него, в зависимости от требований задачи, плюс деления результатов этих вычислений на диагональные элементы матрицы.

1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода составляют множественные (всего n-1) вычисления сумм

y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}

в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.

1.5 Описание схемы реализации последовательного алгоритма

Чтобы понять последовательность исполнения, перепишем формулы метода так:

1. x_{n} = y_{n}/u_{nn}

Далее для всех i от n-1 до 1 по убыванию выполняются

2. x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}

Особо отметим, что вычисления сумм вида y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} производят в режиме накопления вычитанием из y_{i} произведений u_{ij} x_{j} для j от n до i + 1, c убыванием j. Другие порядки выполнения суммирования приводят к резкому ухудшению параллельных свойств алгоритма, хотя, к сожалению, остаются кое-где в литературе и пакетах программ.