Обратная подстановка (вещественный вариант): различия между версиями
[непроверенная версия] | [непроверенная версия] |
Frolov (обсуждение | вклад) |
Frolov (обсуждение | вклад) |
||
Строка 125: | Строка 125: | ||
'''Объём выходных данных''': <math>n</math>. | '''Объём выходных данных''': <math>n</math>. | ||
+ | |||
+ | === Свойства алгоритма === | ||
+ | |||
+ | Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является ''линейным'' (отношение квадратической к линейной). | ||
+ | |||
+ | При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных – всего лишь ''константа''. | ||
+ | |||
+ | При этом алгоритм полностью детерминирован. Использование другого порядка выполнения ассоциативных операций в данной версии нами не рассматривается, поскольку в корне меняет структуру алгоритма и делает параллельную сложность квадратической. |
Версия 13:09, 11 сентября 2014
Содержание
- 1 Описание свойств и структуры алгоритма
- 1.1 Словесное описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
1 Описание свойств и структуры алгоритма
1.1 Словесное описание алгоритма
Обратный ход метода Гаусса - решение СЛАУ Ux = y с правой треугольной матрицей U. Матрица U - одна из составляющих матрицы A и получается либо из LU-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, разложение Холецкого и др.), либо из других разложений. В силу треугольности U решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.
1.2 Математическое описание
Исходные данные: правая треугольная матрица U (элементы u_{ij}), вектор правой части y (элементы y_{i}).
Вычисляемые данные: вектор решения x (элементы x_{i}).
Формулы метода:
- \begin{align} x_{n} & = y_{n}/u_{nn} \\ x_{i} & = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}, \quad i \in [1, n - 1]. \end{align}
Существует также блочная версия метода, однако в данном описании разобран только точечный метод.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро обратного хода метода Гаусса можно составить из множественных (всего их n) вычислений скалярных произведений строк матрицы U на уже вычисленную часть вектора x:
- \sum_{j = i+1}^{n} u_{ij} x_{j}
в режиме накопления или без него, в зависимости от требований задачи, с их последующим вычитанием из компоненты вектора y и деления на диагональный элемент матрицы U. В отечественных реализациях, даже в последовательных, упомянутый способ представления не используется. Дело в том, что даже в этих реализациях метода вычисление сумм типа
- y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}
в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому следует считать вычислительным ядром метода не вычисления скалярных произведений, а вычисления выражений
- y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}
в режиме накопления или без него, в зависимости от требований задачи, плюс деления результатов этих вычислений на диагональные элементы матрицы.
1.4 Макроструктура алгоритма
Как уже записано в описании ядра алгоритма, основную часть метода составляют множественные (всего n-1) вычисления сумм
- y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}
в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.
1.5 Описание схемы реализации последовательного алгоритма
Чтобы понять последовательность исполнения, перепишем формулы метода так:
1. x_{n} = y_{n}/u_{nn}
Далее для всех i от n-1 до 1 по убыванию выполняются
2. x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}
Особо отметим, что вычисления сумм вида y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} производят в режиме накопления вычитанием из y_{i} произведений u_{ij} x_{j} для j от n до i + 1, c убыванием j. Другие порядки выполнения суммирования приводят к резкому ухудшению параллельных свойств алгоритма, хотя, к сожалению, остаются кое-где в литературе и пакетах программ.
1.6 Последовательная сложность алгоритма
Для обратного хода метода Гаусса порядка n в последовательном (наиболее быстром) варианте требуется:
- n делений,
- по \frac{n^2-n}{2} умножений и сложений (вычитаний) — основная часть алгоритма.
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности (или использования функции вроде DPROD в Фортране), что ещё больше увеличивает долю умножений и сложений/вычитаний во времени, требуемом для выполнения обратного хода метода Гаусса.
При классификации по последовательной сложности, таким образом, обратный ход метода Гаусса относится к алгоритмам с квадратической сложностью.
1.7 Информационный граф
Опишем граф алгоритма как аналитически, так и в виде рисунка.
Граф алгоритма состоит из двух групп вершин, расположенных в целочисленных узлах двух областей разной размерности.
Первая группа вершин расположена в одномерной области, соответствующая ей операция вычисляет функцию деления. Естественно введённая единственная координата каждой из вершин i меняется в диапазоне от n до 1, принимая все целочисленные значения.
Делимое в этой операции:
- при i = n — элемент входных данных, а именно y_{n};
- при i \lt n — результат срабатывания операции, соответствующей вершине из второй группы, с координатами i, i+1.
Делитель для этой операции - элемент входных данных, а именно u_{nn}.
Результат срабатывания операции является выходным данным x_{i}.
Вторая группа вершин расположена в двумерной области, соответствующая ей операция a-bc. Естественно введённые координаты области таковы:
- i — меняется в диапазоне от n-1 до 1, принимая все целочисленные значения;
- j — меняется в диапазоне от n до i+1, принимая все целочисленные значения.
Аргументы операции следующие:
- a:
- при j = n элемент входных данных y_{i};
- при j \lt n — результат срабатывания операции, соответствующей вершине из второй группы, с координатами i, j+1;
- b — элемент входных данных, а именно u_{ij};
- c — результат срабатывания операции, соответствующей вершине из первой группы, с координатой j;
Результат срабатывания операции является промежуточным данным алгоритма.
Описанный граф можно посмотреть на рисунке, выполненном для случая n = 5. Здесь вершины первой группы обозначены розовым цветом и знаком деления, вершины второй — зелёным цветом и буквой f. Изображена подача только входных данных из вектора y_{i}, подача элементов матрицы U, идущая во все вершины, на рисунке не представлена.
1.8 Описание ресурса параллелизма алгоритма
Для обратного хода метода Гаусса порядка n в параллельном варианте требуется последовательно выполнить следующие ярусы:
- n ярусов делений (в каждом из ярусов одно деление),
- по n - 1 ярусов умножений и сложений/вычитаний (в каждом из ярусов — линейное количество операций, от 1 до n-1.
Таким образом, в параллельном варианте, в отличие от последовательного, вычисления делений будут определять довольно значительную долю требуемого времени. При реализации на конкретных архитектурах наличие в отдельных ярусах ЯПФ отдельных делений может породить и другие проблемы. Например, при реализации на ПЛИСах остальные вычисления (умножения и сложения/вычитания) могут быть конвейеризованы, что даёт экономию и по ресурсам на программируемых платах; деления из-за их изолированности приведут к занятию ресурсов на платах, которые будут простаивать большую часть времени.
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности, а в параллельном варианте это означает, что практически все промежуточные вычисления для выполнения алгоритма в режиме накопления должны быть двойной точности. В отличие от последовательного варианта это означает некоторое увеличение требуемой памяти.
При классификации по высоте ЯПФ, таким образом, обратный ход метода Гаусса относится к алгоритмам с линейной сложностью. При классификации по ширине ЯПФ его сложность также будет линейной.
1.9 Описание входных и выходных данных
Входные данные: верхняя треугольная матрица U (элементы u_{ij}), вектор правой части y (элементы y_{i}).
Объём входных данных: \frac{n (n + 3)}{2} (в силу треугольности достаточно хранить только диагональ и наддиагональные элементы матрицы U).
Выходные данные: вектор решения x (элементы x_{i}).
Объём выходных данных: n.
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является линейным (отношение квадратической к линейной).
При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных – всего лишь константа.
При этом алгоритм полностью детерминирован. Использование другого порядка выполнения ассоциативных операций в данной версии нами не рассматривается, поскольку в корне меняет структуру алгоритма и делает параллельную сложность квадратической.