Уровень алгоритма

Участник:Ivanov.kir.m/Быстрое дискретное преобразование Фурье: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 1: Строка 1:
 +
{{algorithm
 +
| name              = Алгоритм Кули-Тьюки одномерного преобразования Фурье для действительных чисел
 +
| serial_complexity = <math>O (n log_{2} n)</math>
 +
| pf_height        = <math>O (log_{2} n)</math>
 +
| pf_width          = <math>n</math>
 +
| input_data        = <math>n</math> действительных чисел
 +
| output_data      = <math>\lfloor N/2 \rfloor+1</math> комплексных чисел
 +
}}
 
'''Быстрое преобразование Фурье (БПФ, FFT)''' — алгоритм быстрого  вычисления дискретного преобразования Фурье (ДПФ). То есть, алгоритм вычисления за количество действий, меньшее чем <math>O(N^{2})</math>, требуемых для прямого (по формуле) вычисления ДПФ. Иногда под БПФ понимается один из быстрых алгоритмов, называемый алгоритмом прореживания по частоте/времени или алгоритмом по основанию 2, имеющий сложность <math>O(N\log(N))</math>.
 
'''Быстрое преобразование Фурье (БПФ, FFT)''' — алгоритм быстрого  вычисления дискретного преобразования Фурье (ДПФ). То есть, алгоритм вычисления за количество действий, меньшее чем <math>O(N^{2})</math>, требуемых для прямого (по формуле) вычисления ДПФ. Иногда под БПФ понимается один из быстрых алгоритмов, называемый алгоритмом прореживания по частоте/времени или алгоритмом по основанию 2, имеющий сложность <math>O(N\log(N))</math>.
 
= ЧАСТЬ. Свойства и структура алгоритмов =
 
= ЧАСТЬ. Свойства и структура алгоритмов =
Строка 4: Строка 12:
  
 
== Общее описание алгоритма ==
 
== Общее описание алгоритма ==
 
+
Одним из вариантов '''быстрого преобразования Фурье''' для вектора '''действительных чисел''' с размерностью равной степени двойки является '''алгоритм Кули-Тьюки'''. Отличительной особенностью данного алгоритма является то, что он обходится без использования специфических приемов, использующихся именно для степеней четверки, восьмерки и т.п. Однако благодаря тому, что на вход данному алгоритму подается вектор чисто вещественных чисел, выходной вектор удовлетворяет '''эрмитовой избыточности''' (''Hermitian redundancy'') , т.е.  <math>out[i]</math> является сопряженным с <math>out[n-i]</math>. Это обстоятельство позволяет достичь роста скорости и снижения затрат памяти примерно в 2 раза по сравнению с комплексным аналогом алгоритма.
  
 
== Математическое описание алгоритма ==
 
== Математическое описание алгоритма ==
Строка 40: Строка 48:
  
 
== Локальность данных и вычислений ==
 
== Локальность данных и вычислений ==
 +
  
 
== Динамические характеристики и эффективность реализации алгоритма ==
 
== Динамические характеристики и эффективность реализации алгоритма ==

Версия 13:07, 18 сентября 2016


Алгоритм Кули-Тьюки одномерного преобразования Фурье для действительных чисел
Последовательный алгоритм
Последовательная сложность [math]O (n log_{2} n)[/math]
Объём входных данных [math]n[/math] действительных чисел
Объём выходных данных [math]\lfloor N/2 \rfloor+1[/math] комплексных чисел
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O (log_{2} n)[/math]
Ширина ярусно-параллельной формы [math]n[/math]

Быстрое преобразование Фурье (БПФ, FFT) — алгоритм быстрого  вычисления дискретного преобразования Фурье (ДПФ). То есть, алгоритм вычисления за количество действий, меньшее чем [math]O(N^{2})[/math], требуемых для прямого (по формуле) вычисления ДПФ. Иногда под БПФ понимается один из быстрых алгоритмов, называемый алгоритмом прореживания по частоте/времени или алгоритмом по основанию 2, имеющий сложность [math]O(N\log(N))[/math].

1 ЧАСТЬ. Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Одним из вариантов быстрого преобразования Фурье для вектора действительных чисел с размерностью равной степени двойки является алгоритм Кули-Тьюки. Отличительной особенностью данного алгоритма является то, что он обходится без использования специфических приемов, использующихся именно для степеней четверки, восьмерки и т.п. Однако благодаря тому, что на вход данному алгоритму подается вектор чисто вещественных чисел, выходной вектор удовлетворяет эрмитовой избыточности (Hermitian redundancy) , т.е. [math]out[i][/math] является сопряженным с [math]out[n-i][/math]. Это обстоятельство позволяет достичь роста скорости и снижения затрат памяти примерно в 2 раза по сравнению с комплексным аналогом алгоритма.

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 ЧАСТЬ. Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Динамические характеристики и эффективность реализации алгоритма

2.4 Существующие реализации алгоритма

3 Литература

[1] Википедия [Электронный ресурс]. Тема: Быстрое преобразование Фурье – Электрон. дан. – URL Быстрое преобразование Фурье (дата обращения 17.09.2016)