Участник:Anton goy/Самоорганизующиеся карты Кохонена: различия между версиями
Anton goy (обсуждение | вклад) |
Anton goy (обсуждение | вклад) |
||
Строка 7: | Строка 7: | ||
== Общее описание алгоритма == | == Общее описание алгоритма == | ||
− | [[file:Kohonen_network.png|right | + | [[file:Kohonen_network.png|right]] |
'''Самоорганизующаяся карта Кохонена''' (англ. Self-Organizing Map или сокращено SOM) - это разновидность нейронных сетей, относящаяся к алгоритмам обучения без учителя. Основная цель - найти скрытые закономерности в данных по средством снижения размерности исходного пространства. Важным свойством карт Кохонена является то, что они строят отображение в пространство низкой размерности (обычно двумерное) таким образом, что топология исходного пространства сохраняется. Результат данного отображения - правильная решетка из обученных нейронов - называется "картой" исходного пространства. Алгоритм был разработан известным финским учёным, заслуженным академиком Финской Академии Наук Теуво Кохоненом в 1984(2) году. Карты Кохенана находят успешное применение в задачах кластеризации и визуализации, а также для снижения размерности и детектирования аномалий в данных. | '''Самоорганизующаяся карта Кохонена''' (англ. Self-Organizing Map или сокращено SOM) - это разновидность нейронных сетей, относящаяся к алгоритмам обучения без учителя. Основная цель - найти скрытые закономерности в данных по средством снижения размерности исходного пространства. Важным свойством карт Кохонена является то, что они строят отображение в пространство низкой размерности (обычно двумерное) таким образом, что топология исходного пространства сохраняется. Результат данного отображения - правильная решетка из обученных нейронов - называется "картой" исходного пространства. Алгоритм был разработан известным финским учёным, заслуженным академиком Финской Академии Наук Теуво Кохоненом в 1984(2) году. Карты Кохенана находят успешное применение в задачах кластеризации и визуализации, а также для снижения размерности и детектирования аномалий в данных. |
Версия 16:09, 21 сентября 2016
Автор: Гой Антон, 617 группа.
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Самоорганизующаяся карта Кохонена (англ. Self-Organizing Map или сокращено SOM) - это разновидность нейронных сетей, относящаяся к алгоритмам обучения без учителя. Основная цель - найти скрытые закономерности в данных по средством снижения размерности исходного пространства. Важным свойством карт Кохонена является то, что они строят отображение в пространство низкой размерности (обычно двумерное) таким образом, что топология исходного пространства сохраняется. Результат данного отображения - правильная решетка из обученных нейронов - называется "картой" исходного пространства. Алгоритм был разработан известным финским учёным, заслуженным академиком Финской Академии Наук Теуво Кохоненом в 1984(2) году. Карты Кохенана находят успешное применение в задачах кластеризации и визуализации, а также для снижения размерности и детектирования аномалий в данных.
Карты Кохонена и по своей архитектуре, и по методу обучения отличаются от обычных нейронных сетей прямого распространения. C точки зрения метода обучения карты Кохонена не используют градиентные методы для минимизации ошибки (как это делается в сетях прямого распространения), поскольку являются алгоритмом обучения без учителя и никак не могут учитывать информацию и метках классов. Поэтому нейронная сеть обучается через соревнование между нейронами: на каждом шаге алгоритма для случайного объекта из обучающей выборки выбирается нейрон-победитель (best matching unit, BMU), который в определенном смысле похож на данный объект. А архитектура карты Кохонена представляет два полносвязных слоя из нейронов: первый слой (будем называть его l_1) состоит из входных нейронов (их количество равно размерности исходного пространства), второй слой (l_2) представляет собой регулярную (прямоугольную или шестиугольную) решётку из нейронов. Размеры сетки выбираются вручную до начала запуска алгоритма. Таким образом каждый нейрон слоя l_2 описывается двумя векторами: первый вектор - вектор весов \mathbf{w}, размерность которого совпадает с размерностью исходного пространства, а второй вектор \mathbf{r} определяет положение нейрона в регулярной сетке слоя l_2. Процесс обучения состоит в настройке векторов \mathbf{w}, а положение нейрона в решететке - вектор \mathbf{r} остается неизменым на протяжении всего обучения.
1.2 Математическое описание алгоритма
Пусть \mathcal{L} = \left\{ \mathbf{x}_i \right\}_{i=1}^{N} - некоторое подмножество точек пространства \mathbb{R}^D, \mathbf{x}_i = \left( x_{i1}, \dots, x_{iD} \right) \in \mathbb{R}^D. В машинном обучении множество \mathcal{L} называют обучающей выборкой. Кроме того, задана структура слоя l_2: выбрана прямоугольная или шестиугольная связность между неронами, задано общее количество нейронов (обозанчим через L), а также для каждого i-го нейрона определено его положение в решетке - вектор \mathbf{r}_i.