Участник:MelLain/ЕМ-алгоритм (Тематическое моделирование): различия между версиями
MelLain (обсуждение | вклад) |
MelLain (обсуждение | вклад) |
||
Строка 33: | Строка 33: | ||
==== Математическое описание ЕМ-алгоритма ==== | ==== Математическое описание ЕМ-алгоритма ==== | ||
− | Задача максимизации правдоподобия для описанной модели имеет следующий вид: | + | Задача максимизации логарифма правдоподобия для описанной модели имеет следующий вид: |
:<math> | :<math> | ||
Строка 53: | Строка 53: | ||
</math> | </math> | ||
− | + | Прямая оптимизация логарифма правдоподобия - очень сложная задача, поэтому её решают приближённо с помощью метода простых итераций, в котором чередуются два шага: E (expectation) и M (maximization). Перед первой итерацией выбираются начальные приближения параметров <math>\Phi</math> и <math>\Theta</math>. | |
+ | |||
+ | На Е-шаге по текущим значениям параметров с помощью формулы Байеса вычисляются вспомогательные переменные - условные вероятности <math>p(t\, | \,d, \,w)</math> для всех тем <math>t \in T</math>, для каждого термина <math>w \in d</math> для каждого документа <math>d \in D</math>: | ||
+ | |||
+ | :<math> | ||
+ | \begin{align} | ||
+ | p(t\, | \,d, \,w ) = \cfrac{\phi_{wt}\theta_{td}}{\sum_{s \in T}\phi_{ws}\theta_{sd}} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | На М-шаге, наоброт, по условным вероятностям <math>p(t\, | \,d, \,w)</math> вычисляется новое приближение параметров <math>\phi_{wt}</math>\theta_{td}</math>: | ||
+ | |||
+ | :<math> | ||
+ | \begin{align} | ||
+ | \phi_{wt} = \cfrac{\hat n_{wt}}{\hat n_t}, \quad \hat n_t = \sum_{w \in W} \hat n_{wt}, \hat n_{wt} = \sum_{d \in D} n_{dw} p(t\, | \,d, \,w ) | ||
+ | \end{align} | ||
+ | </math> | ||
== Литература == | == Литература == |
Версия 01:28, 23 сентября 2016
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Тематическое моделирование - одно из направлений статистического анализа текстовых коллекций в машинном обучении. В литературе описываются многочисленные разновидности моделей, а также методов их обучения. В данной статье будет рассмотрена тематическая модель вероятностного латентного семантического анализа (PLSA), и процесс её обучения с помощью параллельного ЕМ-алгоритма.
Существует множество разновидностей ЕМ-алгоритмов, ориентированных на учёт тех или иные аспектов решаемой задачи. Наиболее простым вариантом является т.н. оффлайновый алгоритм, непригодный для работы с большими текстовыми данными в силу значительных требований к потребляемой оперативной памяти. Существует ряд модернизаций этого алгоритма, позволяющих избавить его от ряда недостатков. Наилучшей из них является онлайновый вариант алгоритма. Тем не менее, в силу относительно высокой сложности его эффективной параллельной реализации, в данной статье будет рассматриваться гибридный вариант алгоритма, избавленный от большинства недостатков оффлайнового, но имеющий меньшую скорость сходимости, чем онлайновый.
1.2 Математическое описание
1.2.1 Математическое описание модели
В большинстве тематических моделей коллекция текстов рассматривается в виде "мешка слов", т.е. модель учитывает только статистическую встречаемость слов в документах и никак не использует информацию об их взаимном расположении внутри документа.
Вероятностная модель PLSA имеет следующий вид:
- [math] \begin{align} F \approx \Phi \times \Theta \end{align} [/math]
Здесь [math]F[/math] - это матрица исходных данных размера [math]|W| \times |D|[/math], где [math]D[/math] - это множество документов, а [math]W[/math] - словарь коллекции, т.е. множество всех уникальных слов, встретившихся в документах.
[math]\Phi[/math] - это матрица параметров модели размера [math]|W| \times |T|[/math], где [math]T[/math] - это множество тем, которые мы хотим извлечь из коллекции. Под темой в бытовом смысле смысле понимается набор слов, характеризующих её. Формально говоря, тема - это вероятностное распределение на множестве слов [math]W[/math], поэтому матрица [math]\Phi[/math] является стохастической, т.е. столбцы её неотрицательны и суммируются в единицу.
[math]\Theta[/math] - матрица результатов кластеризации обучающей коллекции по полученным темам размера [math]|T| \times |D|[/math], в ней столбцы также являются вероятностными распределениями, на этот раз документов на множестве тем.
Фактически, PLSA есть ни что иное, как задача приближённого стохастического матричного разложения, в ходе которой производится мягкая бикластеризация данных (мягкая - потому что объекты распределяются по классам не строго, а с некоторой вероятностью, би - потому что производится одновременная кластрезация слов по темам, и тем - по документам). Поставленную задачу можно решать методом максимального правдоподобия, с помощью ЕМ-алгоритма.
В данной статье будут расматриваться только плотные матрицы (хотя при определённых условиях можно эффективно использовать разреженные).
1.2.2 Математическое описание ЕМ-алгоритма
Задача максимизации логарифма правдоподобия для описанной модели имеет следующий вид:
- [math] \begin{align} \mathcal{L}(\Phi, \Theta) = \sum_{d \in D}\sum_{w \in d} n_{dw} \,\mathrm{ln}(\sum_{t \in T} \phi_{wt} \theta_{td}) \rightarrow \underset{\Phi, \Theta}{\mathrm{max}} \end{align} [/math]
- [math] \begin{align} \sum_{w \in W} \phi_{wt} = 1, \, \forall t \in T, \quad \phi_{wt} \ge 0; \end{align} [/math]
- [math] \begin{align} \sum_{t \in T} \theta_{td} = 1, \, \forall d \in D, \quad \theta_{td} \ge 0. \end{align} [/math]
Прямая оптимизация логарифма правдоподобия - очень сложная задача, поэтому её решают приближённо с помощью метода простых итераций, в котором чередуются два шага: E (expectation) и M (maximization). Перед первой итерацией выбираются начальные приближения параметров [math]\Phi[/math] и [math]\Theta[/math].
На Е-шаге по текущим значениям параметров с помощью формулы Байеса вычисляются вспомогательные переменные - условные вероятности [math]p(t\, | \,d, \,w)[/math] для всех тем [math]t \in T[/math], для каждого термина [math]w \in d[/math] для каждого документа [math]d \in D[/math]:
- [math] \begin{align} p(t\, | \,d, \,w ) = \cfrac{\phi_{wt}\theta_{td}}{\sum_{s \in T}\phi_{ws}\theta_{sd}} \end{align} [/math]
На М-шаге, наоброт, по условным вероятностям [math]p(t\, | \,d, \,w)[/math] вычисляется новое приближение параметров [math]\phi_{wt}[/math]\theta_{td}</math>:
- [math] \begin{align} \phi_{wt} = \cfrac{\hat n_{wt}}{\hat n_t}, \quad \hat n_t = \sum_{w \in W} \hat n_{wt}, \hat n_{wt} = \sum_{d \in D} n_{dw} p(t\, | \,d, \,w ) \end{align} [/math]