Участник:Маркова Екатерина/Построение матрицы Адамара: различия между версиями
Katemeron (обсуждение | вклад) |
Katemeron (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы. | В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы. | ||
+ | |||
Сначала заполняется правый верхний блок матрицы <math>h</math> | Сначала заполняется правый верхний блок матрицы <math>h</math> | ||
− | <math>h_{ij} = h_{i(j - \frac{N}{2})}</math>, где <math>i = 1..\frac{N}{2}</math>, <math>j = \frac{N}{2}+1..N</math> | + | |
+ | <math>h_{ij} = h_{i(j - \frac{N}{2})}</math>, где <math>i = 1..\frac{N}{2}</math>, <math>j = \frac{N}{2}+1..N</math>; | ||
+ | |||
+ | затем левый нижний блок | ||
+ | |||
+ | <math>h_{ij} = h_{(i-\frac{N}{2})j}</math>, где <math>i = \frac{N}{2}+1..N</math>, <math>j = 1.. \frac{N}{2}</math>. | ||
+ | |||
+ | Последним заполняется нижний правый блок матрицы | ||
+ | |||
+ | <math>h_{ij} = h_{(i-\frac{N}{2})(j-\frac{N}{2})}</math>, где <math>i = \frac{N}{2}+1..N/math>, <math>j = \frac{N}{2}+1..N</math>. | ||
+ | |||
+ | |||
'''1.6 Последовательная сложность алгоритма''' | '''1.6 Последовательная сложность алгоритма''' | ||
Версия 23:23, 12 октября 2016
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
Вычислительное ядро рекурсивного алгоритма состоит из [math]\;\frac{N^2}{2}\;[/math] переносов значений в повторяющиеся блоки матрицы и [math]\frac{N^2}{4}[/math] переносов со сменой знака (умножением на [math]-1[/math]).
1.4 Макроструктура алгоритма
Алгоритм не использует в качестве составных частей другие алгоритмы. Как это было описано в вычислительном ядре, в пустые блоки дублируются со сменой или без смены знака значения первого блока матрицы.
1.5 Схема реализации последовательного алгоритма
В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы.
Сначала заполняется правый верхний блок матрицы [math]h[/math]
[math]h_{ij} = h_{i(j - \frac{N}{2})}[/math], где [math]i = 1..\frac{N}{2}[/math], [math]j = \frac{N}{2}+1..N[/math];
затем левый нижний блок
[math]h_{ij} = h_{(i-\frac{N}{2})j}[/math], где [math]i = \frac{N}{2}+1..N[/math], [math]j = 1.. \frac{N}{2}[/math].
Последним заполняется нижний правый блок матрицы
[math]h_{ij} = h_{(i-\frac{N}{2})(j-\frac{N}{2})}[/math], где [math]i = \frac{N}{2}+1..N/math\gt , \lt math\gt j = \frac{N}{2}+1..N[/math].
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма