Участник:Sergey Lavrushkin/EM-алгоритм кластеризации: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 25: Строка 25:
 
* <math>k</math> — число кластеров,
 
* <math>k</math> — число кластеров,
 
* <math>X =\{x_{1}, x_{2}, ..., x_{n}\}</math> — множество из <math>n</math> наблюдений <math>q</math>-мерного пространства,
 
* <math>X =\{x_{1}, x_{2}, ..., x_{n}\}</math> — множество из <math>n</math> наблюдений <math>q</math>-мерного пространства,
* <math>\epsilon</math> — допустимое отклонение для логарифмического правдоподобия,
 
* <math>m</math> — максимальное число итераций
 
 
Вычисляемые данные:
 
Вычисляемые данные:
 
* <math>(w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)</math> — параметры смеси гауссовых распределений
 
* <math>(w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)</math> — параметры смеси гауссовых распределений
* <math>Y</math> — матрица с вероятностями членства в кластерах
+
* <math>Y</math> — матрица размера <math>n \times q</math> с вероятностями членства в кластерах
 
==== Постановка задачи разделения смеси гауссовых распределений ====
 
==== Постановка задачи разделения смеси гауссовых распределений ====
 
Пусть <math>w_1, ..., w_k</math> — априорные вероятности кластеров, <math>p_1(x), ..., p_k(x)</math> — плотности распределения кластеров,
 
Пусть <math>w_1, ..., w_k</math> — априорные вероятности кластеров, <math>p_1(x), ..., p_k(x)</math> — плотности распределения кластеров,

Версия 13:04, 13 октября 2016

Автор статьи: Сергей Лаврушкин (группа 620)

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

1.1.1 EM-алгоритм

EM-алгоритм (англ. expectation-maximization) - алгоритм, используемый в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных. Каждая итерация алгоритма состоит из двух шагов. На E-шаге (expectation) вычисляется ожидаемое значение функции правдоподобия, при этом скрытые переменные рассматриваются как наблюдаемые. На M-шаге (maximization) вычисляется оценка максимального правдоподобия, таким образом увеличивается ожидаемое правдоподобие, вычисляемое на E-шаге. Затем это значение используется для E-шага на следующей итерации. Алгоритм выполняется до сходимости.

Как правило, ЕМ-алгоритм применяется для решения задач двух типов:

  • К первому типу можно отнести задачи, связанные с анализом действительно неполных данных, когда некоторые статистические данные отсутствуют в силу каких-либо причин.
  • Ко второму типу задач можно отнести те задачи, в которых функция правдоподобия имеет вид, не допускающий удобных аналитических методов исследования, но допускающий серьезные упрощения, если в задачу ввести дополнительные «ненаблюдаемые» (скрытые, латентные) переменные. Примерами прикладных задач второго типа являются задачи распознавания образов, реконструкции изображений. Математическую суть данных задач составляют задачи кластерного анализа, классификации и разделения смесей вероятностных распределений.

Алгоритм основан на методике итеративного вычисления оценок максимального правдоподобия, предложенной в 1977 г. (A. P. Demster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm).

1.1.2 Кластеризация с помощью EM-алгоритма

Кластерный анализ (Data clustering) — задача разбиения заданной выборки объектов (ситуаций) на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались. В основе идеи применения EM-алгоритма для кластеризации лежит предположение, что исследуемое множество данных может быть смоделировано с помощью линейной комбинации многомерных нормальных распределений, а целью является оценка параметров распределения, которые максимизируют логарифмическую функцию правдоподобия, используемую в качестве меры качества модели. К оцениваемым параметрам относятся математические ожидания и матрицы ковариаций. Предполагается, что любое наблюдение принадлежит ко всем кластерам, но с разной вероятностью. Задача заключается в "подгонке" распределений смеси к данным, а затем в определении вероятностей принадлежности наблюдения к каждому кластеру. Наблюдение должно быть отнесено к тому кластеру, для которого данная вероятность выше.

Алгоритм EM основан на вычислении расстояний. Он может рассматриваться как обобщение кластеризации на основе анализа смеси вероятностных распределений. В процессе работы алгоритма происходит итеративное улучшение решения, а остановка осуществляется в момент, когда достигается требуемый уровень точности модели. Мерой в данном случае является монотонно увеличивающаяся статистическая величина, называемая логарифмическим правдоподобием.

1.2 Математическое описание алгоритма

Исходные данные:

  • [math]k[/math] — число кластеров,
  • [math]X =\{x_{1}, x_{2}, ..., x_{n}\}[/math] — множество из [math]n[/math] наблюдений [math]q[/math]-мерного пространства,

Вычисляемые данные:

  • [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math] — параметры смеси гауссовых распределений
  • [math]Y[/math] — матрица размера [math]n \times q[/math] с вероятностями членства в кластерах

1.2.1 Постановка задачи разделения смеси гауссовых распределений

Пусть [math]w_1, ..., w_k[/math] — априорные вероятности кластеров, [math]p_1(x), ..., p_k(x)[/math] — плотности распределения кластеров, тогда плотность распределения вектора признаков [math]x[/math] сразу по всем кластерам равна:

[math] \begin{align} p(x) = \sum_{j=1}^{k}w_jp_j(x) \end{align} [/math]

Необходимо на основе выборки оценить параметры модели [math]w_1, ..., w_k, p_1(x), ..., p_k(x)[/math]. Это позволит оценивать вероятность принадлежности к кластеру и, таким образом, решить задачу кластеризации. Такая задача называется задачей разделения смеси распределений:

[math] \begin{align} p(x) = \sum_{j=1}^{k}w_jp_j(x),\quad p_j(x) = \phi(\theta_j; x), \end{align} [/math]

где [math]\theta_j[/math] — параметры распределения [math]p_j(x)[/math]. В случае смести гауссовых распределений предполагается, что все компоненты имеют многомерное нормальное распределение. То есть в случае [math]q[/math]-мерного пространства признаков [math]p_j(x)[/math] имеют следующий вид:

[math] \begin{align} & p_j(x) = \frac{1}{\Big(2\pi\Big)^{\frac{q}{2}}\sqrt{|\Sigma_j|}}\exp{\bigg\{-\frac{\delta^2}{2}\bigg\} },\\ & \delta^2 = \Big( x - \mu_j \Big)^T \Sigma_j^{-1} \Big( x - \mu_j \Big), \end{align} [/math]

где:

  • [math]\Sigma_j[/math] — ковариационная матрица размером </math>q \times q</math>,
  • [math]\mu_j[/math][math]q[/math]-мерный вектор математических ожиданий,
  • [math]\delta^2[/math] — квадратичное расстояние Махаланобиса.

В случае смеси гауссовых распределений получаем, что [math]\theta_j = (\mu_j, \Sigma_j)[/math]. То есть для решения задачи разделения смеси гауссовых распределений необходимо оценить вектор параметров [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math]. Согласно принципу максимизации правдоподобия:

[math] \begin{align} w, \theta = \underset{w, \theta}{\operatorname{argmax}} \sum_{i=1}^{n}\ln{p(x_i)} = \underset{w, \theta}{\operatorname{argmax}} \sum_{i=1}^{n}\ln{\sum_{j=1}^{k}w_jp_j(x_i)} \end{align} [/math]

Таким образом, имеет место задача максимизации суммы логарифмов сумм, решение которой представляет большую трудность. В таком случае полезным оказывается итеративный метод решения — EM-алгоритм.

1.2.2 EM-алгоритм

Оптимальные параметры задачи разделения смеси гауссовых распределений отыскиваются последовательно с помощью итерационного EM-алгоритма. Основная идея – вводится вспомогательный вектор скрытых переменных. Это позволяет свести сложную оптимизационную задачу к последовательности итераций по пересчету коэффициентов (скрытых переменных по текущему приближению вектора параметров - E-шаг) и максимизации правдоподобия (с целью найти следующее приближение вектора - М-шаг).

EM-алгоритм заключается в следующем:

  1. В начале работы алгоритма задаются параметры начального приближения. Наиболее общим способом инициализации является присвоение элементам матрицы математических ожиданий случайных значений [math] \mu_j \leftarrow Random [/math], начальные ковариационные матрицы определяются как единчиные [math]\Sigma_j \leftarrow I[/math], веса кластеров задаются одинаковыми [math]w_i \leftarrow \frac{1}{k}[/math]. Также в качестве начальных параметров можно использовать результат работы алгоритма K-means. (Данная эвристика применяется, так как K-means требуется намного меньше итераций до достижения стабилизации, в то время как каждый шаг EM требует больших вычислительных затрат).
  2. Далее итеративно выполняется следующая пара процедур:
    • E-шаг: используя текущее значение вектора параметров [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math], вычисляем значение вектора скрытых переменных [math]g[/math]:
      [math] \begin{align} & g_{ij} = \frac{w_j p_j(x_i)}{\sum_{l=1}^{k}w_lp_l(x_i)}, \\ & n_j = \sum_{i = 1}^{n}g_{ij}. \end{align} [/math]
    • М-шаг: переоценка вектора параметров, используя текущее значение вектора скрытых переменных:
      [math] \begin{align} & \mu_j^{new} = \frac{1}{n_j} \sum_{i = 1}^{n}g_{ij}x_i, \\ & \Sigma_j^{new} = \frac{1}{n_j} \sum_{i = 1}^{n}g_{ij}(x_i - \mu_j^{new})(x_i - \mu_j^{new})^T,\\ & w_j^{new} = \frac{n_j}{n}. \end{align} [/math]

Итерации происходят до сходимости или достижения максимального числа итераций.

1.3 Вычислительное ядро алгоритма

Важнейшим действием вычислительного ядра EM-алгоритма, выполняемым на E-шаге, является вычисление скрытых переменных [math]g_{ij}[/math] (всего их [math]nk[/math]). Для M-шага таким действием является вычисление [math]g_{ij}(x_i - \mu_j^{new})(x_i - \mu_j^{new})^T[/math] (всего их [math]nk[/math]).

1.4 Макроструктура алгоритма

Как записано в описании ядра алгоритма, основную часть метода составляют множественные вычисления скрытых переменных [math]g_{ij}[/math] на E-шаге и выражений вида [math]g_{ij}(x_i - \mu_j^{new})(x_i - \mu_j^{new})^T[/math] на M-шаге. Сложность вычисления этих выражений в случае недиагональных матриц ковариаций — [math]O(q^2)[/math], а в случае диагональных — [math]O(q)[/math].

1.5 Схема реализации последовательного алгоритма

Последовательная реализация алгоритма EM может быть проиллюстрирована с помощью следующего псевдокода:

  1. Инициализация: установка начальных значений [math]\mu, \, \Sigma_j \, (j = \overline{1, k}), \, w[/math].
  2. Пока изменение логарифмического правдоподобия [math]\Delta llh \geq \epsilon[/math] и не достигнуто максимальное число итераций [math]m[/math], выполнять шаги E и M.

Шаг E

def E-step:
    Инициализировать нулевыми значениями [math]\mu^{'}, \, \Sigma_j^{'} \, (j = \overline{1, k}), \, w^{'}, \, llh[/math]
    for [math]j = \overline{1, k}[/math]:
        Вычислить определитель и обратную матрицу матрицы [math]\Sigma_j[/math]
    for [math]i = \overline{1, n}[/math]:
        [math]sump_i = 0[/math]
        for [math]j = \overline{1, k}[/math]:
            [math]\delta_{ij} = \big( x_i - \mu_j \big)^T \Sigma_j^{-1} \big( x_i - \mu_j \big)[/math]
            [math]gij = \frac{w_j}{{2 \pi}^\frac{q}{2}|\Sigma_j|}\exp{\big\{-\frac{\delta^2}{2}\big\} }[/math]
            [math]sump_i \mathrel{+}= g_{ij}[/math]
        [math]y_i = \frac{g_i}{sump_i}[/math]
        [math]llh \mathrel{+}= \ln(sump_i)[/math]
        [math]\mu^{'} \mathrel{+}= x_iy_i^T[/math]
        [math]w^{'} \mathrel{+}= y_i[/math]

Шаг M

def M-step:
    for [math]j = \overline{1, k}[/math]:
        [math]\mu_j = \frac{\mu_j^{'}}{w_j^{'}}[/math]
        for [math]i = \overline{1, n}[/math]:
            [math]\Sigma_j^{'} \mathrel{+}= (x_i - \mu_j)y_{ij}(x_i - \mu_j)^T[/math]
        [math]\Sigma_j = \frac{\Sigma_j^{'}}{w_j^{'}}[/math]
    [math]w = \frac{w^{'}}{n}[/math]

Логаририфмическое правдоподобие вычисляется как:

[math] \begin{align} llh=\sum_{i=1}^{n}\ln{(sump_i)} \end{align} [/math]

Матрицы [math]\mu^{'}, \, \Sigma_j^{'} \, (j = \overline{1, k}), \, w^{'}[/math] являются временными и используются только для вычислений.

1.6 Последовательная сложность алгоритма

В случае диагональности матриц ковариации определитель матрицы и ее обращение может быть вычислено за время [math]O(q)[/math], а алгоритм имеет сложность [math]O(mkqn)[/math]. В случае недиагональной матрицы сложность алгоритма составит [math]O(mkq^2n)[/math], то есть будет квадратично возрастать с увеличением размерности данных.

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: [math]X =\{x_{1}, x_{2}, ..., x_{n}\}[/math] — множество из [math]n[/math] наблюдений [math]q[/math]-мерного пространства.

Объем входных данных: [math]nq[/math]

Выходные данные: [math](w, \theta) = (w_1, ..., w_k; \mu_1, ..., \mu_k; \Sigma_1, ..., \Sigma_k)[/math] — параметры смеси гауссовых распределений; [math]Y[/math] — матрица с вероятностями членства в кластерах.

Объем выходных данных: [math]k(q^2 + q + 1) + nq[/math]

1.10 Свойства алгоритма

1.10.1 Достоинства и недостатки алгоритма

Среди достоинств EM-алгоритма можно выделить следующие:

  • Мощная статистическая основа.
  • Линейное увеличение сложности при росте объема данных.
  • Устойчивость к шумам и пропускам в данных.
  • Возможность построения желаемого числа кластеров.
  • Быстрая сходимость при удачной инициализации.

К недостаткам EM-алгоритма можно отнести следующее:

  • Алгоритм неустойчив по начальным данным (то есть тем, которые инициализируют вектор параметров на первой итерации), так как он находит локальный экстремум, значение которого может оказаться гораздо ниже, чем глобальный максимум. В зависимости от выбора начального приближения алгоритм может сходиться к разным точкам. Также может сильно варьироваться скорость сходимости.
  • Алгоритм не позволяет определять количество [math]k[/math] компонент смеси. Эта величина является структурным параметром алгоритма.
  • Предположение о нормальности всех измерений данных не всегда выполняется

2 Программная реализация алгоритма

2.1 Масштабируемость реализации алгоритма

2.2 Существующие реализации алгоритма

3 Литература